首页 > 最新文献

IEEE Symposium on Swarm Intelligence最新文献

英文 中文
Model Predictivity Assessment: Incremental Test-Set Selection and Accuracy Evaluation 模型预测评估:增量测试集选择和准确性评估
Pub Date : 2022-07-08 DOI: 10.1007/978-3-031-16609-9_20
E. Fekhari, B. Iooss, Joseph Mur'e, L. Pronzato, M. Rendas
{"title":"Model Predictivity Assessment: Incremental Test-Set Selection and Accuracy Evaluation","authors":"E. Fekhari, B. Iooss, Joseph Mur'e, L. Pronzato, M. Rendas","doi":"10.1007/978-3-031-16609-9_20","DOIUrl":"https://doi.org/10.1007/978-3-031-16609-9_20","url":null,"abstract":"","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125066775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Particle swarm optimizer for variable weighting in clustering high-dimensional data 高维数据聚类中变权重的粒子群优化算法
Pub Date : 2009-05-15 DOI: 10.1109/SIS.2009.4937842
Yanping Lv, Shengrui Wang, Shaozi Li, Changle Zhou
This paper proposes a particle swarm optimizer to solve the variable weighting problem in subspace clustering of high-dimensional data. Many subspace clustering algorithms fail to yield good cluster quality because they do not employ an efficient search strategy. In this paper, we are interested in soft subspace clustering and design a suitable weighting k-means objective function, on which a change of variable weights is exponentially reflected. We transform the original constrained variable weighting problem into a problem with bound constraints using a potential solution coding method and we develop a particle swarm optimizer to minimize the objective function in order to obtain global optima to the variable weighting problem in clustering. Our experimental results on synthetic datasets show that the proposed algorithm greatly improves cluster quality. In addition, the result of the new algorithm is much less dependent on the initial cluster centroids.
针对高维数据子空间聚类中的变权问题,提出了一种粒子群优化算法。许多子空间聚类算法无法产生良好的聚类质量,因为它们没有采用有效的搜索策略。本文主要研究软子空间聚类问题,设计了一个合适的加权k-means目标函数,在该目标函数上可以指数地反映变量权值的变化。利用潜在解编码的方法将原约束变权问题转化为有界约束问题,并开发了粒子群优化器,使目标函数最小化,从而得到聚类中变权问题的全局最优解。在合成数据集上的实验结果表明,该算法极大地提高了聚类质量。此外,新算法的结果对初始聚类质心的依赖程度大大降低。
{"title":"Particle swarm optimizer for variable weighting in clustering high-dimensional data","authors":"Yanping Lv, Shengrui Wang, Shaozi Li, Changle Zhou","doi":"10.1109/SIS.2009.4937842","DOIUrl":"https://doi.org/10.1109/SIS.2009.4937842","url":null,"abstract":"This paper proposes a particle swarm optimizer to solve the variable weighting problem in subspace clustering of high-dimensional data. Many subspace clustering algorithms fail to yield good cluster quality because they do not employ an efficient search strategy. In this paper, we are interested in soft subspace clustering and design a suitable weighting k-means objective function, on which a change of variable weights is exponentially reflected. We transform the original constrained variable weighting problem into a problem with bound constraints using a potential solution coding method and we develop a particle swarm optimizer to minimize the objective function in order to obtain global optima to the variable weighting problem in clustering. Our experimental results on synthetic datasets show that the proposed algorithm greatly improves cluster quality. In addition, the result of the new algorithm is much less dependent on the initial cluster centroids.","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128282828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
The honey bee foraging behavior syndrome: quantifying the response threshold model of division of labor 蜜蜂觅食行为综合征:量化分工反应阈值模型
Pub Date : 2005-06-08 DOI: 10.1109/SIS.2005.1501595
T. Pankiw
This review focuses on how honey bee responsiveness to sucrose is related to a correlated suite of foraging traits, called the honey bee foraging behavior syndrome. Behavior syndromes are reminiscent of human personalities. In general, the honey bee foraging syndrome is characterized as bees with low sucrose response thresholds begin foraging at younger ages than bees with high sucrose response thresholds. Sucrose response threshold in young pre-foraging aged bees predicts forage choice 2 to 3 weeks later. The relationship is such that bees with low sucrose response thresholds forage for resources with no or low sugar rewards such as water and pollen. Bees with higher sucrose response thresholds forage for nectar and return with nectar containing sugar concentrations that are positively correlated with individual sucrose response threshold. The honey bee provides one of the best studied cases of a natural behavioral syndrome from genes to behavior, having great potential for understanding social evolution, and the organization of a complex system.
这篇综述的重点是蜜蜂对蔗糖的反应是如何与一套相关的觅食特征相关的,称为蜜蜂觅食行为综合症。行为综合症让人联想到人类的个性。一般来说,蜜蜂觅食综合症的特点是低蔗糖反应阈值的蜜蜂比高蔗糖反应阈值的蜜蜂更年轻。预采蜜蜂的蔗糖反应阈值预测2 ~ 3周后的饲料选择。这种关系是这样的,具有低蔗糖反应阈值的蜜蜂寻找没有或低糖奖励的资源,如水和花粉。具有较高蔗糖反应阈值的蜜蜂觅食花蜜,并返回含有糖浓度与个体蔗糖反应阈值正相关的花蜜。蜜蜂提供了从基因到行为的自然行为综合症的最佳研究案例之一,对理解社会进化和复杂系统的组织具有巨大的潜力。
{"title":"The honey bee foraging behavior syndrome: quantifying the response threshold model of division of labor","authors":"T. Pankiw","doi":"10.1109/SIS.2005.1501595","DOIUrl":"https://doi.org/10.1109/SIS.2005.1501595","url":null,"abstract":"This review focuses on how honey bee responsiveness to sucrose is related to a correlated suite of foraging traits, called the honey bee foraging behavior syndrome. Behavior syndromes are reminiscent of human personalities. In general, the honey bee foraging syndrome is characterized as bees with low sucrose response thresholds begin foraging at younger ages than bees with high sucrose response thresholds. Sucrose response threshold in young pre-foraging aged bees predicts forage choice 2 to 3 weeks later. The relationship is such that bees with low sucrose response thresholds forage for resources with no or low sugar rewards such as water and pollen. Bees with higher sucrose response thresholds forage for nectar and return with nectar containing sugar concentrations that are positively correlated with individual sucrose response threshold. The honey bee provides one of the best studied cases of a natural behavioral syndrome from genes to behavior, having great potential for understanding social evolution, and the organization of a complex system.","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134161415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Neural Network for the Statistical Process Control of HVAC Systems in Passenger Rail Vehicles 神经网络在客运轨道车辆HVAC系统统计过程控制中的应用
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-16609-9_23
F. Ambrosino, G. Giannini, A. Lepore, B. Palumbo, Gianluca Sposito
{"title":"Neural Network for the Statistical Process Control of HVAC Systems in Passenger Rail Vehicles","authors":"F. Ambrosino, G. Giannini, A. Lepore, B. Palumbo, Gianluca Sposito","doi":"10.1007/978-3-031-16609-9_23","DOIUrl":"https://doi.org/10.1007/978-3-031-16609-9_23","url":null,"abstract":"","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123048904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting States of Distress in Financial Markets: The Case of the Italian Sovereign Debt 侦测金融市场的危机状态:意大利主权债务的案例
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-16609-9_13
M. Flora, R. Renò
{"title":"Detecting States of Distress in Financial Markets: The Case of the Italian Sovereign Debt","authors":"M. Flora, R. Renò","doi":"10.1007/978-3-031-16609-9_13","DOIUrl":"https://doi.org/10.1007/978-3-031-16609-9_13","url":null,"abstract":"","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116196718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatially Balanced Indirect Sampling to Estimate the Coverage of the Agricultural Census 空间平衡间接抽样估算农业普查覆盖范围
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-16609-9_27
F. Piersimoni, Francesco Pantalone, R. Benedetti
{"title":"Spatially Balanced Indirect Sampling to Estimate the Coverage of the Agricultural Census","authors":"F. Piersimoni, Francesco Pantalone, R. Benedetti","doi":"10.1007/978-3-031-16609-9_27","DOIUrl":"https://doi.org/10.1007/978-3-031-16609-9_27","url":null,"abstract":"","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127423648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive COVID-19 Screening of a Subpopulation 某亚群的适应性COVID-19筛查
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-16609-9_8
Fulvio Di Stefano, M. Gasparini
{"title":"Adaptive COVID-19 Screening of a Subpopulation","authors":"Fulvio Di Stefano, M. Gasparini","doi":"10.1007/978-3-031-16609-9_8","DOIUrl":"https://doi.org/10.1007/978-3-031-16609-9_8","url":null,"abstract":"","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116911896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Graphical Approach for the Selection of the Number of Clusters in the Spectral Clustering Algorithm 光谱聚类算法中聚类数选择的一种图形化方法
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-16609-9_3
C. D. Nuzzo, S. Ingrassia
{"title":"A Graphical Approach for the Selection of the Number of Clusters in the Spectral Clustering Algorithm","authors":"C. D. Nuzzo, S. Ingrassia","doi":"10.1007/978-3-031-16609-9_3","DOIUrl":"https://doi.org/10.1007/978-3-031-16609-9_3","url":null,"abstract":"","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116435603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Population Size Estimation by Repeated Identifications of Units. A Bayesian Semi-parametric Mixture Model Approach 用重复辨识的方法估计种群规模。一种贝叶斯半参数混合模型方法
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-16609-9_25
T. Tuoto, Davide Di Cecco, A. Tancredi
{"title":"Population Size Estimation by Repeated Identifications of Units. A Bayesian Semi-parametric Mixture Model Approach","authors":"T. Tuoto, Davide Di Cecco, A. Tancredi","doi":"10.1007/978-3-031-16609-9_25","DOIUrl":"https://doi.org/10.1007/978-3-031-16609-9_25","url":null,"abstract":"","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"210 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129959899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Citizen Data and Citizen Science: A Challenge for Official Statistics 公民数据与公民科学:对官方统计的挑战
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-16609-9_12
M. Pratesi
{"title":"Citizen Data and Citizen Science: A Challenge for Official Statistics","authors":"M. Pratesi","doi":"10.1007/978-3-031-16609-9_12","DOIUrl":"https://doi.org/10.1007/978-3-031-16609-9_12","url":null,"abstract":"","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130669482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Symposium on Swarm Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1