Y. P. Michel, M. Lucci, M. Casalboni, P. Steglich, S. Schrader
{"title":"Mechanical characterisation of the four most used coating materials for optical fibres","authors":"Y. P. Michel, M. Lucci, M. Casalboni, P. Steglich, S. Schrader","doi":"10.5220/0005336700960102","DOIUrl":null,"url":null,"abstract":"Optical multimode fibres have a wide variety of applications ranging from industrial to medical use. Therefore, even if they are just used as waveguides or sensors, it is important to characterise the whole fingerprint, including the optical and mechanical properties of such fibres. Since the stiffness/elasticity of a material could influence the optical output of a fibre due to micro-bendings, in this paper we report the calculated Young's Modulus of acrylate, fluorinated acrylate, polyimide and silicone, which are the four most used coating materials for such optical components. The results demonstrate that Young's Modulus does have an impact on the attenuation of propagating light along the optical fibre. However, the refractive index of the coating materials still has a significant impact on the performance of optical fibres.","PeriodicalId":170064,"journal":{"name":"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005336700960102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Optical multimode fibres have a wide variety of applications ranging from industrial to medical use. Therefore, even if they are just used as waveguides or sensors, it is important to characterise the whole fingerprint, including the optical and mechanical properties of such fibres. Since the stiffness/elasticity of a material could influence the optical output of a fibre due to micro-bendings, in this paper we report the calculated Young's Modulus of acrylate, fluorinated acrylate, polyimide and silicone, which are the four most used coating materials for such optical components. The results demonstrate that Young's Modulus does have an impact on the attenuation of propagating light along the optical fibre. However, the refractive index of the coating materials still has a significant impact on the performance of optical fibres.