Machine learning approach to recognize subject based sentiment values of reviews

N. De Mel, H. H. Hettiarachchi, W. Madusanka, G. L. Malaka, A. Perera, U. Kohomban
{"title":"Machine learning approach to recognize subject based sentiment values of reviews","authors":"N. De Mel, H. H. Hettiarachchi, W. Madusanka, G. L. Malaka, A. Perera, U. Kohomban","doi":"10.1109/MERCON.2016.7480107","DOIUrl":null,"url":null,"abstract":"Due to the increase in the number of people participating online on reviewing travel related entities such as hotels, cities and attractions, there is a rich corpus of textual information available online. However, to make a decision on a certain entity, one has to read many such reviews manually, which is inconvenient. To make sense of the reviews, the essential first step is to understand the semantics that lie therein. This paper discusses a system that uses machine learning based classifiers to label the entities found in text into semantic concepts defined in an ontology. A subject classifier with a precision of 0.785 and a sentiment classifier with a correlation coefficient of 0.9423 was developed providing sufficient accuracy for subject categorization and sentiment evaluation in the proposed system.","PeriodicalId":184790,"journal":{"name":"2016 Moratuwa Engineering Research Conference (MERCon)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2016.7480107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the increase in the number of people participating online on reviewing travel related entities such as hotels, cities and attractions, there is a rich corpus of textual information available online. However, to make a decision on a certain entity, one has to read many such reviews manually, which is inconvenient. To make sense of the reviews, the essential first step is to understand the semantics that lie therein. This paper discusses a system that uses machine learning based classifiers to label the entities found in text into semantic concepts defined in an ontology. A subject classifier with a precision of 0.785 and a sentiment classifier with a correlation coefficient of 0.9423 was developed providing sufficient accuracy for subject categorization and sentiment evaluation in the proposed system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别基于主题的评论情感值的机器学习方法
由于参与在线点评旅游相关实体(如酒店、城市和景点)的人数越来越多,网上有丰富的文本信息。然而,要对某个实体做出决定,就必须手动阅读许多这样的评论,这很不方便。要理解这些评论,关键的第一步是理解其中的语义。本文讨论了一个系统,该系统使用基于机器学习的分类器将文本中找到的实体标记为本体中定义的语义概念。开发了一个精度为0.785的主题分类器和一个相关系数为0.9423的情感分类器,为该系统的主题分类和情感评价提供了足够的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and construction of an automated test bench for MCB testing Stability analysis for a twin boom H- tail Medium Scale UAV through simulated dynamic model Command Governor Adaptive Control for Unmanned Underwater Vehicles with measurement noise and actuator dead-zone An automatic classifier for exam questions with WordNet and Cosine similarity Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1