An Objective Reduction Evolutionary Multiobjective Algorithm using Adaptive Density-Based Clustering for Many-objective Optimization Problem

Mingjing Wang, Long Chen, Huiling Chen
{"title":"An Objective Reduction Evolutionary Multiobjective Algorithm using Adaptive Density-Based Clustering for Many-objective Optimization Problem","authors":"Mingjing Wang, Long Chen, Huiling Chen","doi":"10.1145/3590003.3590103","DOIUrl":null,"url":null,"abstract":"Many-objective optimization problems (MaOPs), are the most difficult problems to solve when it comes to multiobjective optimization issues (MOPs). MaOPs provide formidable challenges to current multiobjective evolutionary methods such as selection operators, computational cost, visualization of the high-dimensional trade-off front. Removal of the reductant objectives from the original objective set, known as objective reduction, is one of the most significant approaches for MaOPs, which can tackle optimization problems with more than 15 objectives is made feasible by its ability to greatly overcome the challenges of existing multi-objective evolutionary computing techniques. In this study, an objective reduction evolutionary multiobjective algorithm using adaptive density-based clustering is presented for MaOPs. The parameters in the density-based clustering can be adaptively determined by depending on the data samples constructed. Based on the clustering result, the algorithm employs an adaptive strategy for objective aggregation that preserves the structure of the original Pareto front as much as feasible. Finally, the performance of the proposed multiobjective algorithms on benchmarks is thoroughly investigated. The numerical findings and comparisons demonstrate the efficacy and superiority of the suggested multiobjective algorithms and it may be treated as a potential tool for MaOPs.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many-objective optimization problems (MaOPs), are the most difficult problems to solve when it comes to multiobjective optimization issues (MOPs). MaOPs provide formidable challenges to current multiobjective evolutionary methods such as selection operators, computational cost, visualization of the high-dimensional trade-off front. Removal of the reductant objectives from the original objective set, known as objective reduction, is one of the most significant approaches for MaOPs, which can tackle optimization problems with more than 15 objectives is made feasible by its ability to greatly overcome the challenges of existing multi-objective evolutionary computing techniques. In this study, an objective reduction evolutionary multiobjective algorithm using adaptive density-based clustering is presented for MaOPs. The parameters in the density-based clustering can be adaptively determined by depending on the data samples constructed. Based on the clustering result, the algorithm employs an adaptive strategy for objective aggregation that preserves the structure of the original Pareto front as much as feasible. Finally, the performance of the proposed multiobjective algorithms on benchmarks is thoroughly investigated. The numerical findings and comparisons demonstrate the efficacy and superiority of the suggested multiobjective algorithms and it may be treated as a potential tool for MaOPs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应密度聚类的目标约简进化多目标优化算法
多目标优化问题(MaOPs)是多目标优化问题中最难解决的问题。MaOPs对当前的多目标进化方法提出了严峻的挑战,如选择算子、计算成本、高维权衡前沿的可视化等。从原始目标集中去除还原剂目标,即目标约简,是MaOPs最重要的方法之一,它可以解决超过15个目标的优化问题,因为它能够极大地克服现有多目标进化计算技术的挑战。本文提出了一种基于自适应密度聚类的MaOPs目标约简进化多目标算法。基于密度聚类的参数可以根据所构造的数据样本自适应确定。基于聚类结果,该算法采用自适应策略进行目标聚类,尽可能保留原Pareto前沿的结构。最后,对所提出的多目标算法在基准上的性能进行了深入的研究。数值结果和比较表明了所提出的多目标算法的有效性和优越性,它可以作为MaOPs的潜在工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Interpretable Brain Network Atlas-Based Hybrid Model for Mild Cognitive Impairment Progression Prediction Heart Sound Classification Algorithm Based on Sub-band Statistics and Time-frequency Fusion Features An Unmanned Lane Detection Algorithm Using Deep Learning and Ordered Test Sets Strategy Federated Learning-Based Intrusion Detection Method for Smart Grid A U-Net based Self-Supervised Image Generation Model Applying PCA using Small Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1