One-dimensional Color-level Co-occurrence matrices

M. Benco, R. Hudec, S. Matuska, M. Zachariasova
{"title":"One-dimensional Color-level Co-occurrence matrices","authors":"M. Benco, R. Hudec, S. Matuska, M. Zachariasova","doi":"10.1109/ELEKTRO.2012.6225600","DOIUrl":null,"url":null,"abstract":"The texture feature extraction plays important role in image analysis. This paper deals with improvement of the one-dimensional version of GLCM (Gray Level Cooccurrence Matrix). In our approach, the color information of texture was taken into consideration. The novel One dimensional Color Level Co-occurrence Matrix (1D-CLCM) are designed. Performances of proposed method are verified on database of 2600 color images. Experimental results demonstrated that 1D-CLCM is more effective compared to one-dimensional and original GLCM for image retrieval.","PeriodicalId":343071,"journal":{"name":"2012 ELEKTRO","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO.2012.6225600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The texture feature extraction plays important role in image analysis. This paper deals with improvement of the one-dimensional version of GLCM (Gray Level Cooccurrence Matrix). In our approach, the color information of texture was taken into consideration. The novel One dimensional Color Level Co-occurrence Matrix (1D-CLCM) are designed. Performances of proposed method are verified on database of 2600 color images. Experimental results demonstrated that 1D-CLCM is more effective compared to one-dimensional and original GLCM for image retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维色级共现矩阵
纹理特征提取在图像分析中起着重要的作用。本文研究了一维灰度共生矩阵(GLCM)的改进。在我们的方法中,考虑了纹理的颜色信息。设计了一种新的一维色阶共现矩阵(1D-CLCM)。在2600张彩色图像数据库上验证了该方法的有效性。实验结果表明,与一维和原始GLCM相比,1D-CLCM在图像检索方面更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum transmittable data rates for Millimeter-wave fixed wireless links Propagation models for WiMAX at 3.5 GHz Impact of selected parameters on eddy current attenuation in conductive materials Determination of rail steel's phase composition by means of X-ray diffraction analysis Multiparameter symbolic sensitivity analysis of active circuits by using nullor model and modified Coates flow graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1