Performance evaluation of the channelized Hotelling observer using bootstrap list-mode PET studies

C. Groiselle, Y. D’Asseler, H. Gifford, S. Glick
{"title":"Performance evaluation of the channelized Hotelling observer using bootstrap list-mode PET studies","authors":"C. Groiselle, Y. D’Asseler, H. Gifford, S. Glick","doi":"10.1109/NSSMIC.2003.1352402","DOIUrl":null,"url":null,"abstract":"This study investigated whether list-mode PET data generated using the bootstrap method can be used to predict lesion detectability as assessed by the channelized Hotelling observer (CHO). A Monte-Carlo simulator was used to generate 2D PET list-mode data set acquisitions of a disk object. One of these list-mode sets was then used to create an ensemble of bootstrap list-mode sets. A randomly positioned signal (lesion) was introduced into half of the list-mode sets to create an ensemble of signal-present and signal-absent list-mode sets. These sets were then reconstructed using the OSEM list-mode algorithm. The CHO was computed from the ensemble of reconstructed images generated from the bootstrap data sets as well as from independent noisy data sets. The F-test and the student t-test found no significant difference (confidence level 5%) in the areas under the LROC curve generated using the independent noisy list-mode sets and the bootstrap list-mode sets for clinical count levels. It is also shown how bootstrap images can be used to implement a patient-specific, CHO-based stopping-rule criterion for ordered-subset expectation-maximization (OSEM) list-mode iterative reconstruction. An example of applying the CHO-based stopping-rule criterion for list-mode reconstruction of the MCAT phantom showed an optimal detectability index at iterations 7 using 2 subsets respectively. Results from this study suggest that the bootstrap approach can be used to conduct numerical observer studies with more realistic backgrounds by generating them from a patient study (with the introduction of simulated lesions), and allows the possibility of applying a patient-specific, CHO-based stopping-rule criterion for list-mode iterative reconstruction.","PeriodicalId":186175,"journal":{"name":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2003.1352402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study investigated whether list-mode PET data generated using the bootstrap method can be used to predict lesion detectability as assessed by the channelized Hotelling observer (CHO). A Monte-Carlo simulator was used to generate 2D PET list-mode data set acquisitions of a disk object. One of these list-mode sets was then used to create an ensemble of bootstrap list-mode sets. A randomly positioned signal (lesion) was introduced into half of the list-mode sets to create an ensemble of signal-present and signal-absent list-mode sets. These sets were then reconstructed using the OSEM list-mode algorithm. The CHO was computed from the ensemble of reconstructed images generated from the bootstrap data sets as well as from independent noisy data sets. The F-test and the student t-test found no significant difference (confidence level 5%) in the areas under the LROC curve generated using the independent noisy list-mode sets and the bootstrap list-mode sets for clinical count levels. It is also shown how bootstrap images can be used to implement a patient-specific, CHO-based stopping-rule criterion for ordered-subset expectation-maximization (OSEM) list-mode iterative reconstruction. An example of applying the CHO-based stopping-rule criterion for list-mode reconstruction of the MCAT phantom showed an optimal detectability index at iterations 7 using 2 subsets respectively. Results from this study suggest that the bootstrap approach can be used to conduct numerical observer studies with more realistic backgrounds by generating them from a patient study (with the introduction of simulated lesions), and allows the possibility of applying a patient-specific, CHO-based stopping-rule criterion for list-mode iterative reconstruction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自举表模式PET研究信道化Hotelling观测器的性能评价
本研究探讨了使用自举法生成的列表模式PET数据是否可以用于预测由通道化Hotelling观测器(CHO)评估的病变可检测性。利用蒙特卡罗模拟机生成磁盘对象的二维PET表模数据集采集。然后使用其中一个列表模式集来创建一个引导列表模式集的集合。将随机定位的信号(病变)引入到一半的列表模式集合中,以创建信号存在和信号不存在的列表模式集合。然后使用OSEM列表模式算法重建这些集合。CHO是根据自举数据集和独立噪声数据集生成的重建图像的集合计算的。f检验和学生t检验发现,使用独立噪声列表模式集和自举列表模式集生成的LROC曲线下的区域没有显著差异(置信水平为5%)。还展示了如何使用引导图像来实现有序子集期望最大化(OSEM)列表模式迭代重建的特定于患者的、基于cho的停止规则标准。将基于cho的停止规则准则应用于MCAT幻影的列表模式重建的实例表明,在迭代7时分别使用2个子集获得了最优的可检测性指标。本研究的结果表明,自举方法可以通过从患者研究(引入模拟病变)中生成具有更真实背景的数值观察者研究,并允许应用针对患者的、基于cho的停止规则准则进行列表模式迭代重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton irradiation response of CsI(Tl) crystals for the GLAST calorimeter Comparative study of PP0275C hybrid photodetector and XP2020Q photomultiplier in scintillation detection Quality of mass produced lead tungstate crystals SLIM (Secondary emission monitor for Low Interception Monitoring) an innovative non-destructive beam monitor for the extraction lines of a hadrontherapy center Single electron amplification in a "Single-MCP + micromegas + pads" detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1