Efficient structuring of the latent space for controllable data reconstruction and compression

Elena Trunz , Michael Weinmann , Sebastian Merzbach , Reinhard Klein
{"title":"Efficient structuring of the latent space for controllable data reconstruction and compression","authors":"Elena Trunz ,&nbsp;Michael Weinmann ,&nbsp;Sebastian Merzbach ,&nbsp;Reinhard Klein","doi":"10.1016/j.gvc.2022.200059","DOIUrl":null,"url":null,"abstract":"<div><p>Explainable neural models have gained a lot of attention in recent years. However, conventional encoder–decoder models do not capture information regarding the importance of the involved latent variables and rely on a heuristic a-priori specification of the dimensionality of the latent space or its selection based on multiple trainings. In this paper, we focus on the efficient structuring of the latent space of encoder–decoder approaches for explainable data reconstruction and compression. For this purpose, we leverage the concept of Shapley values to determine the contribution of the latent variables on the model’s output and rank them according to decreasing importance. As a result, a truncation of the latent dimensions to those that contribute the most to the overall reconstruction allows a trade-off between model compactness (i.e. dimensionality of the latent space) and representational power (i.e. reconstruction quality). In contrast to other recent autoencoder variants that incorporate a PCA-based ordering of the latent variables, our approach does not require time-consuming training processes and does not introduce additional weights. This makes our approach particularly valuable for compact representation and compression. We validate our approach at the examples of representing and compressing images as well as high-dimensional reflectance data.</p></div>","PeriodicalId":100592,"journal":{"name":"Graphics and Visual Computing","volume":"7 ","pages":"Article 200059"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666629422000122/pdfft?md5=2b8c29d0049e663e614057a005fc7cdf&pid=1-s2.0-S2666629422000122-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphics and Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666629422000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Explainable neural models have gained a lot of attention in recent years. However, conventional encoder–decoder models do not capture information regarding the importance of the involved latent variables and rely on a heuristic a-priori specification of the dimensionality of the latent space or its selection based on multiple trainings. In this paper, we focus on the efficient structuring of the latent space of encoder–decoder approaches for explainable data reconstruction and compression. For this purpose, we leverage the concept of Shapley values to determine the contribution of the latent variables on the model’s output and rank them according to decreasing importance. As a result, a truncation of the latent dimensions to those that contribute the most to the overall reconstruction allows a trade-off between model compactness (i.e. dimensionality of the latent space) and representational power (i.e. reconstruction quality). In contrast to other recent autoencoder variants that incorporate a PCA-based ordering of the latent variables, our approach does not require time-consuming training processes and does not introduce additional weights. This makes our approach particularly valuable for compact representation and compression. We validate our approach at the examples of representing and compressing images as well as high-dimensional reflectance data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效构造潜在空间,实现可控数据重构和压缩
近年来,可解释的神经模型获得了很多关注。然而,传统的编码器-解码器模型不能捕获有关所涉及的潜在变量的重要性的信息,并且依赖于潜在空间维度的启发式先验规范或基于多次训练的选择。在本文中,我们关注的是编码器-解码器方法的潜在空间的有效结构,以实现可解释的数据重构和压缩。为此,我们利用Shapley值的概念来确定潜在变量对模型输出的贡献,并根据重要性的递减对它们进行排序。因此,截断对整体重建贡献最大的潜在维度,可以在模型紧凑性(即潜在空间的维度)和表征能力(即重建质量)之间进行权衡。与最近其他包含基于pca的潜在变量排序的自编码器变体相比,我们的方法不需要耗时的训练过程,也不引入额外的权重。这使得我们的方法对于紧凑表示和压缩特别有价值。我们在表示和压缩图像以及高维反射率数据的示例中验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Geometric models for plant leaf area estimation from 3D point clouds: A comparative study Efficient structuring of the latent space for controllable data reconstruction and compression Locally-guided neural denoising Editorial Note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1