State Estimation for Aerial Vehicles in Forest Environments

Antonio C. B. Chiella, B. Teixeira, G. Pereira
{"title":"State Estimation for Aerial Vehicles in Forest Environments","authors":"Antonio C. B. Chiella, B. Teixeira, G. Pereira","doi":"10.1109/ICUAS.2019.8797822","DOIUrl":null,"url":null,"abstract":"Autonomous navigation of unnamed vehicles in a forest is a challenging task. In such environments, due to the canopies of the trees, GNSS-based navigation can be degraded or even unavailable. In this paper we propose a state estimation solution for aerial vehicles based on the fusion of GNSS, AHRS and LIDAR-based odometry. In our LIDAR odometry solution, the trunks of the trees are used in a feature-based scan-matching algorithm to estimate the relative movement of the vehicle. Our method uses a robust adaptive fusion algorithm based on the unscented Kalman filter. Experimental data collected during the navigation of a quadrotor in an actual forest environment is used to demonstrate the effectiveness of our approach.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8797822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Autonomous navigation of unnamed vehicles in a forest is a challenging task. In such environments, due to the canopies of the trees, GNSS-based navigation can be degraded or even unavailable. In this paper we propose a state estimation solution for aerial vehicles based on the fusion of GNSS, AHRS and LIDAR-based odometry. In our LIDAR odometry solution, the trunks of the trees are used in a feature-based scan-matching algorithm to estimate the relative movement of the vehicle. Our method uses a robust adaptive fusion algorithm based on the unscented Kalman filter. Experimental data collected during the navigation of a quadrotor in an actual forest environment is used to demonstrate the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
森林环境中飞行器状态估计
森林中未命名车辆的自主导航是一项具有挑战性的任务。在这种环境下,由于树木的树冠,基于gnss的导航可能会降级甚至不可用。本文提出了一种融合GNSS、AHRS和lidar的飞行器状态估计方法。在我们的激光雷达里程计解决方案中,树干被用于基于特征的扫描匹配算法,以估计车辆的相对运动。该方法采用基于无气味卡尔曼滤波的鲁棒自适应融合算法。在实际森林环境中,四旋翼飞行器导航过程中收集的实验数据证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Centroid vectoring control using aerial manipulator: Experimental results Comparative Study for Coordinating Multiple Unmanned HAPS for Communications Area Coverage A Methodology for evaluating Commercial Off The Shelf parachutes designed for sUAS failsafe systems Model-Based Fail-Safe Module for Autonomous Multirotor UAVs with Parachute Systems Deep Learning with Semi-Synthetic Training Images for Detection of Non-Cooperative UAVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1