{"title":"State Estimation for Aerial Vehicles in Forest Environments","authors":"Antonio C. B. Chiella, B. Teixeira, G. Pereira","doi":"10.1109/ICUAS.2019.8797822","DOIUrl":null,"url":null,"abstract":"Autonomous navigation of unnamed vehicles in a forest is a challenging task. In such environments, due to the canopies of the trees, GNSS-based navigation can be degraded or even unavailable. In this paper we propose a state estimation solution for aerial vehicles based on the fusion of GNSS, AHRS and LIDAR-based odometry. In our LIDAR odometry solution, the trunks of the trees are used in a feature-based scan-matching algorithm to estimate the relative movement of the vehicle. Our method uses a robust adaptive fusion algorithm based on the unscented Kalman filter. Experimental data collected during the navigation of a quadrotor in an actual forest environment is used to demonstrate the effectiveness of our approach.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8797822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Autonomous navigation of unnamed vehicles in a forest is a challenging task. In such environments, due to the canopies of the trees, GNSS-based navigation can be degraded or even unavailable. In this paper we propose a state estimation solution for aerial vehicles based on the fusion of GNSS, AHRS and LIDAR-based odometry. In our LIDAR odometry solution, the trunks of the trees are used in a feature-based scan-matching algorithm to estimate the relative movement of the vehicle. Our method uses a robust adaptive fusion algorithm based on the unscented Kalman filter. Experimental data collected during the navigation of a quadrotor in an actual forest environment is used to demonstrate the effectiveness of our approach.