NSV-TTS: Non-Speech Vocalization Modeling And Transfer In Emotional Text-To-Speech

Haitong Zhang, Xinyuan Yu, Yue Lin
{"title":"NSV-TTS: Non-Speech Vocalization Modeling And Transfer In Emotional Text-To-Speech","authors":"Haitong Zhang, Xinyuan Yu, Yue Lin","doi":"10.1109/ICASSP49357.2023.10096033","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of non-speech vocalization (NSV) modeling and transfer in emotional TTS. We propose an emotion TTS system (NSV-TTS) to model NSV and emotional speech. The model utilizes self-supervised learning to extract unsupervised linguistic units (ULUs) for NSV labeling and zero-shot NSV transfer. Furthermore, we propose token mixing and random masking to boost the performance. We evaluate the proposed method on various NSV types and emotion classes. The experimental results reveal that the proposed method performs well in the zero-shot NSV transfer task. Lastly, we conduct ablation studies to investigate the proposed method further.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses the problem of non-speech vocalization (NSV) modeling and transfer in emotional TTS. We propose an emotion TTS system (NSV-TTS) to model NSV and emotional speech. The model utilizes self-supervised learning to extract unsupervised linguistic units (ULUs) for NSV labeling and zero-shot NSV transfer. Furthermore, we propose token mixing and random masking to boost the performance. We evaluate the proposed method on various NSV types and emotion classes. The experimental results reveal that the proposed method performs well in the zero-shot NSV transfer task. Lastly, we conduct ablation studies to investigate the proposed method further.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情绪性文本到语音的非言语发声建模与迁移
本文研究了情感交际中非言语发声(NSV)的建模和迁移问题。我们提出了一个情绪型非成音节元音和情绪型言语模型(NSV-TTS)。该模型利用自监督学习提取无监督语言单元,用于非成音节元音标注和零次非成音节元音迁移。此外,我们提出了令牌混合和随机屏蔽来提高性能。我们在不同的非成音节元音类型和情绪类别上对所提出的方法进行了评估。实验结果表明,该方法能够很好地解决零弹非源声传输任务。最后,我们进行了烧蚀实验来进一步验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight Machine Learning for Seizure Detection on Wearable Devices MSN-net: Multi-Scale Normality Network for Video Anomaly Detection ITER-SIS: Robust Unlimited Sampling Via Iterative Signal Sieving Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter MMATR: A Lightweight Approach for Multimodal Sentiment Analysis Based on Tensor Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1