A Double-Feedback 8T SRAM bitcell for low-voltage low-leakage operation

Afik Vaknin, O. Yona, A. Teman
{"title":"A Double-Feedback 8T SRAM bitcell for low-voltage low-leakage operation","authors":"Afik Vaknin, O. Yona, A. Teman","doi":"10.1109/S3S.2013.6716565","DOIUrl":null,"url":null,"abstract":"Power supply scaling is one the most common and efficient approaches for achieving low-power operation, as both static and dynamic power consumption are aggressively reduced. Ultra-low power systems are often targeted at low-voltage operation, near or below the device threshold voltage (VT). However, the design of such systems must overcome the inherent reduction of noise margins associated with lowering the supply, and in particular, the depleted noise margins of standard SRAM circuits. The two-port 8T SRAM bitcell has been a popular choice for the implementation of low-voltage embedded memories, due to its decoupled read buffer that solves much of the read margin limitation of the standard 6T SRAM cell [1]. However, the 8T circuit is still limited by write margin, and in addition, does not support half-select operations, which are a requirement of many systems. Another disadvantage of the 6T and 8T circuits is that in standby, they present several transistors with relatively high leakage paths through them, leading to significant static power dissipation. In this paper, we propose a novel Double-Feedback SRAM (DF-SRAM) bitcell with improved write margins for low-voltage operation, reduced leakage for ultra-low power consumption, and improved half-select support.","PeriodicalId":219932,"journal":{"name":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2013.6716565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Power supply scaling is one the most common and efficient approaches for achieving low-power operation, as both static and dynamic power consumption are aggressively reduced. Ultra-low power systems are often targeted at low-voltage operation, near or below the device threshold voltage (VT). However, the design of such systems must overcome the inherent reduction of noise margins associated with lowering the supply, and in particular, the depleted noise margins of standard SRAM circuits. The two-port 8T SRAM bitcell has been a popular choice for the implementation of low-voltage embedded memories, due to its decoupled read buffer that solves much of the read margin limitation of the standard 6T SRAM cell [1]. However, the 8T circuit is still limited by write margin, and in addition, does not support half-select operations, which are a requirement of many systems. Another disadvantage of the 6T and 8T circuits is that in standby, they present several transistors with relatively high leakage paths through them, leading to significant static power dissipation. In this paper, we propose a novel Double-Feedback SRAM (DF-SRAM) bitcell with improved write margins for low-voltage operation, reduced leakage for ultra-low power consumption, and improved half-select support.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双反馈8T SRAM位单元,用于低压低漏操作
电源扩展是实现低功耗操作的最常见和最有效的方法之一,因为静态和动态功耗都大大降低了。超低功率系统通常以低压运行为目标,接近或低于器件阈值电压(VT)。然而,这种系统的设计必须克服与降低电源相关的固有噪声裕度降低,特别是标准SRAM电路的耗尽噪声裕度。双端口8T SRAM位单元一直是实现低压嵌入式存储器的流行选择,因为它的解耦读取缓冲解决了标准6T SRAM单元的大部分读取边界限制[1]。然而,8T电路仍然受到写入余量的限制,此外,不支持半选择操作,这是许多系统的要求。6T和8T电路的另一个缺点是,在待机状态下,它们有几个晶体管通过它们具有相对高的泄漏路径,导致显著的静态功耗。在本文中,我们提出了一种新的双反馈SRAM (DF-SRAM)位元,它具有改进的低压操作写入余量,减少超低功耗的泄漏,以及改进的半选择支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct point-contact characterization of Bias instability on bare SOI wafers Parallelism and pipelining in ultra low voltage digital circuits Enabling Sub-nW RF circuits through subthreshold leakage management Low power false positive tolerant event detector for seismic sensors Practical process flows for monolithic 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1