Artificial neural networks in environmental sciences. I. NNs in satellite remote sensing and satellite meteorology

V. Krasnopolsky
{"title":"Artificial neural networks in environmental sciences. I. NNs in satellite remote sensing and satellite meteorology","authors":"V. Krasnopolsky","doi":"10.1109/IJCNN.2001.939565","DOIUrl":null,"url":null,"abstract":"Two generic satellite remote sensing NN applications are described: NN solutions for forward and inverse (or retrieval) problems in satellite remote sensing. These two solutions correspond to two different approaches in satellite retrievals: variational retrievals (retrievals through the direct assimilation of sensor measurements) and standard retrievals. It is shown that both the forward model and the retrieval problem can be considered as nonlinear continuous mappings. The NN technique is a generic technique to perform continuous mappings. It is compared with regression approaches. Examples of a NN SSM/I forward model and a NN SSIM/I retrieval algorithm are used to illustrate advantages of using neural networks for developing both retrieval algorithms and forward models, and for minimizing the retrieval errors.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Two generic satellite remote sensing NN applications are described: NN solutions for forward and inverse (or retrieval) problems in satellite remote sensing. These two solutions correspond to two different approaches in satellite retrievals: variational retrievals (retrievals through the direct assimilation of sensor measurements) and standard retrievals. It is shown that both the forward model and the retrieval problem can be considered as nonlinear continuous mappings. The NN technique is a generic technique to perform continuous mappings. It is compared with regression approaches. Examples of a NN SSM/I forward model and a NN SSIM/I retrieval algorithm are used to illustrate advantages of using neural networks for developing both retrieval algorithms and forward models, and for minimizing the retrieval errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境科学中的人工神经网络。卫星遥感和卫星气象中的神经网络
描述了卫星遥感神经网络的两种通用应用:卫星遥感正演问题和反演问题的神经网络解决方案。这两种解决方案对应于卫星检索中的两种不同方法:变分检索(通过直接同化传感器测量的检索)和标准检索。结果表明,前向模型和检索问题都可以看作是非线性连续映射。神经网络技术是一种执行连续映射的通用技术。并与回归方法进行了比较。用一个NN SSM/I前向模型和一个NN SSIM/I检索算法的例子来说明使用神经网络开发检索算法和前向模型以及最小化检索错误的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1