Evolution-in-materio: Solving function optimization problems using materials

Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty
{"title":"Evolution-in-materio: Solving function optimization problems using materials","authors":"Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty","doi":"10.1109/UKCI.2014.6930152","DOIUrl":null,"url":null,"abstract":"Evolution-in-materio (EIM) is a method that uses artificial evolution to exploit properties of materials to solve computational problems without requiring a detailed understanding of such properties. In this paper, we show that using a purpose-built hardware platform called Mecobo, it is possible to evolve voltages and signals applied to physical materials to solve computational problems. We demonstrate for the first time that this methodology can be applied to function optimization. We evaluate the approach on 23 function optimization benchmarks and in some cases results come very close to the global optimum or even surpass those provided by a well-known software-based evolutionary approach. This indicates that EIM has promise and further investigations would be fruitful.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Evolution-in-materio (EIM) is a method that uses artificial evolution to exploit properties of materials to solve computational problems without requiring a detailed understanding of such properties. In this paper, we show that using a purpose-built hardware platform called Mecobo, it is possible to evolve voltages and signals applied to physical materials to solve computational problems. We demonstrate for the first time that this methodology can be applied to function optimization. We evaluate the approach on 23 function optimization benchmarks and in some cases results come very close to the global optimum or even surpass those provided by a well-known software-based evolutionary approach. This indicates that EIM has promise and further investigations would be fruitful.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
材料进化:利用材料解决功能优化问题
材料进化(EIM)是一种利用人工进化来利用材料的特性来解决计算问题的方法,而不需要详细了解这些特性。在本文中,我们展示了使用一个名为Mecobo的专用硬件平台,可以进化应用于物理材料的电压和信号来解决计算问题。我们首次证明了这种方法可以应用于函数优化。我们在23个函数优化基准上评估了这种方法,在某些情况下,结果非常接近全局最优,甚至超过了著名的基于软件的进化方法所提供的结果。这表明EIM有前景,进一步的研究将会取得成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PermGA algorithm for a sequential optimal space filling DoE framework Modeling neural plasticity in echo state networks for time series prediction Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation Adaptive mutation in dynamic environments Automatic image annotation with long distance spatial-context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1