SBPG: A secure better portable graphics compression architecture for high speed trusted image communication in the IoT

Umar A. Albalawi, S. Mohanty, E. Kougianos
{"title":"SBPG: A secure better portable graphics compression architecture for high speed trusted image communication in the IoT","authors":"Umar A. Albalawi, S. Mohanty, E. Kougianos","doi":"10.1109/EUROSIME.2016.7463397","DOIUrl":null,"url":null,"abstract":"This paper proposes a hardware architecture for a Secure Digital Camera (SDC) integrated with Secure Better Portable Graphics (SBPG) compression algorithm. The proposed architecture is suitable for high performance imaging in the Internet of Things (IoT). The objectives of this paper are twofold. On the one hand, the proposed SBPG architecture offers double-layer protection: encryption and watermarking. On the other hand, the paper proposes SDC integrated with secure BPG compression for real time intelligent traffic surveillance (ITS). The experimental results prove that the new compression technique BPG outperforms JPEG in terms of compression quality and size of the compression file. As the visual quality of the watermarked and compressed images improves with larger values of PSNR, the results show that the proposed SBPG substantially increases the quality of the watermarked compressed images. To achieve a high performance architecture three techniques are considered: first, using the center portion of the image to insert the encrypted signature. Second, watermarking is done in the frequency domain using block-wise DCT size 8×8. Third, in BPG encoder, the proposed architecture uses inter and intra prediction to reduce the temporal and spatial redundancy.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a hardware architecture for a Secure Digital Camera (SDC) integrated with Secure Better Portable Graphics (SBPG) compression algorithm. The proposed architecture is suitable for high performance imaging in the Internet of Things (IoT). The objectives of this paper are twofold. On the one hand, the proposed SBPG architecture offers double-layer protection: encryption and watermarking. On the other hand, the paper proposes SDC integrated with secure BPG compression for real time intelligent traffic surveillance (ITS). The experimental results prove that the new compression technique BPG outperforms JPEG in terms of compression quality and size of the compression file. As the visual quality of the watermarked and compressed images improves with larger values of PSNR, the results show that the proposed SBPG substantially increases the quality of the watermarked compressed images. To achieve a high performance architecture three techniques are considered: first, using the center portion of the image to insert the encrypted signature. Second, watermarking is done in the frequency domain using block-wise DCT size 8×8. Third, in BPG encoder, the proposed architecture uses inter and intra prediction to reduce the temporal and spatial redundancy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SBPG:一种安全的便携式图形压缩架构,用于物联网中的高速可信图像通信
本文提出了一种集成安全更好便携式图形压缩算法的安全数码相机(SDC)硬件架构。该架构适用于物联网(IoT)中的高性能成像。本文的目的是双重的。一方面,提出的SBPG体系结构提供了双重保护:加密和水印。另一方面,本文提出了集成安全BPG压缩的SDC,用于实时智能交通监控。实验结果表明,新的压缩技术BPG在压缩质量和压缩文件大小方面都优于JPEG。随着PSNR值的增大,水印图像和压缩图像的视觉质量都有所提高,结果表明,所提出的SBPG大幅度提高了水印压缩图像的质量。为了实现高性能架构,考虑了三种技术:首先,使用图像的中心部分插入加密签名。其次,在频域中使用块方向DCT大小8×8进行水印。第三,在BPG编码器中,提出的结构利用帧间和帧内预测来减少时间和空间冗余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and modelling of a digital MEMS varactor for wireless applications Aerospace-electronics reliability-assurance (AERA): Three-step prognostics-and-health-monitoring (PHM) modeling approach Hybrid dynamic modeling of V-shaped thermal micro-actuators A systematic approach for reliability assessment of electrolytic capacitor-free LED drivers Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1