22.5 A 93%-power-efficiency photovoltaic energy harvester with irradiance-aware auto-reconfigurable MPPT scheme achieving >95% MPPT efficiency across 650µW to 1W and 2.9ms FOCV MPPT transient time

Sandip Uprety, Hoi Lee
{"title":"22.5 A 93%-power-efficiency photovoltaic energy harvester with irradiance-aware auto-reconfigurable MPPT scheme achieving >95% MPPT efficiency across 650µW to 1W and 2.9ms FOCV MPPT transient time","authors":"Sandip Uprety, Hoi Lee","doi":"10.1109/ISSCC.2017.7870419","DOIUrl":null,"url":null,"abstract":"With more and more functions in modern battery-powered mobile devices, enabling light-harvesting in the power management system can extend battery usage time [1]. For both indoor and outdoor operations of mobile devices, the output power range of the solar panel with the size of a touchscreen can vary from 100s of µW to a Watt due to the irradiance-level variation. An energy harvester is thus essential to achieve high maximum power-point tracking efficiency (ηT) over this wide power range. However, state-of-the-art energy harvesters only use one maximum power-point tracking (MPPT) method under different irradiance levels as shown in Fig. 22.5.1 [2–5]. Those energy harvesters with power-computation-based MPPT schemes for portable [2,3] and standalone [4] systems suffer from low ηT under low input power due to the limited input dynamic range of the MPPT circuitry. Other low-power energy harvesters with the fractional open-cell voltage (FOCV) MPPT scheme are confined by the fractional-constant accuracy to only offer high ηT across a narrow power range [5]. Additionally, the conventional FOCV MPPT scheme requires long transient time of 250ms to identify MPP [5], thereby significantly reducing energy capture from the solar panel. To address the above issues, this paper presents an energy harvester with an irradiance-aware hybrid algorithm (IAHA) to automatically switch between an auto-zeroed pulse-integration based MPPT (AZ PI-MPPT) and a slew-rate-enhanced FOCV (SRE-FOCV) MPPT scheme for maximizing ηT under different irradiance levels. The SRE-FOCV MPPT scheme also enables the energy harvester to shorten the MPPT transient time to 2.9ms in low irradiance levels.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

With more and more functions in modern battery-powered mobile devices, enabling light-harvesting in the power management system can extend battery usage time [1]. For both indoor and outdoor operations of mobile devices, the output power range of the solar panel with the size of a touchscreen can vary from 100s of µW to a Watt due to the irradiance-level variation. An energy harvester is thus essential to achieve high maximum power-point tracking efficiency (ηT) over this wide power range. However, state-of-the-art energy harvesters only use one maximum power-point tracking (MPPT) method under different irradiance levels as shown in Fig. 22.5.1 [2–5]. Those energy harvesters with power-computation-based MPPT schemes for portable [2,3] and standalone [4] systems suffer from low ηT under low input power due to the limited input dynamic range of the MPPT circuitry. Other low-power energy harvesters with the fractional open-cell voltage (FOCV) MPPT scheme are confined by the fractional-constant accuracy to only offer high ηT across a narrow power range [5]. Additionally, the conventional FOCV MPPT scheme requires long transient time of 250ms to identify MPP [5], thereby significantly reducing energy capture from the solar panel. To address the above issues, this paper presents an energy harvester with an irradiance-aware hybrid algorithm (IAHA) to automatically switch between an auto-zeroed pulse-integration based MPPT (AZ PI-MPPT) and a slew-rate-enhanced FOCV (SRE-FOCV) MPPT scheme for maximizing ηT under different irradiance levels. The SRE-FOCV MPPT scheme also enables the energy harvester to shorten the MPPT transient time to 2.9ms in low irradiance levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
22.5具有辐照感知自动可重构MPPT方案的93%功率效率光伏能量采集器,在650µW至1W和2.9ms FOCV MPPT瞬态时间内实现>95%的MPPT效率
随着现代电池供电的移动设备的功能越来越多,在电源管理系统中启用光收集可以延长电池的使用时间[1]。对于移动设备的室内和室外操作,由于辐照水平的变化,带有触摸屏大小的太阳能电池板的输出功率范围可以从100 μ W到1瓦特不等。因此,能量收集器对于在如此宽的功率范围内实现高最大功率点跟踪效率(ηT)至关重要。然而,目前最先进的能量采集器在不同辐照度下只使用一种最大功率点跟踪(MPPT)方法,如图22.5.1所示[2-5]。便携式[2,3]和独立式[4]系统中基于功率计算的MPPT方案的能量采集器,由于MPPT电路的输入动态范围有限,在低输入功率下存在低ηT。其他采用分数开槽电压(FOCV) MPPT方案的低功率能量采集器受到分数常数精度的限制,只能在较窄的功率范围内提供高ηT[5]。此外,传统的FOCV MPPT方案需要250ms长的瞬态时间来识别MPP[5],从而大大减少了太阳能电池板的能量捕获。为了解决上述问题,本文提出了一种具有辐照感知混合算法(IAHA)的能量采集器,该算法可以在基于自动归零脉冲积分的MPPT (AZ PI-MPPT)和旋转速率增强的FOCV (SRE-FOCV) MPPT方案之间自动切换,从而在不同辐照水平下最大化ηT。SRE-FOCV MPPT方案还使能量采集器能够在低辐照水平下将MPPT瞬态时间缩短至2.9ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
20.7 A 13.8µW binaural dual-microphone digital ANSI S1.11 filter bank for hearing aids with zero-short-circuit-current logic in 65nm CMOS 21.6 A 12nW always-on acoustic sensing and object recognition microsystem using frequency-domain feature extraction and SVM classification 7.4 A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3×3×3mm3 wireless sensor node with 20m non-line-of-sight communication 13.5 A 0.35-to-2.6GHz multilevel outphasing transmitter with a digital interpolating phase modulator enabling up to 400MHz instantaneous bandwidth 5.1 A 5×80W 0.004% THD+N automotive multiphase Class-D audio amplifier with integrated low-latency ΔΣ ADCs for digitized feedback after the output filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1