Building Write-Optimized Tree Indexes on Disaggregated Memory

Qing Wang, Youyou Lu, J. Shu
{"title":"Building Write-Optimized Tree Indexes on Disaggregated Memory","authors":"Qing Wang, Youyou Lu, J. Shu","doi":"10.1145/3604437.3604448","DOIUrl":null,"url":null,"abstract":"Memory disaggregation architecture physically separates CPU and memory into independent components, which are connected via high-speed RDMA networks, greatly improving resource utilization of database systems. However, such an architecture poses unique challenges to data indexing due to limited RDMA semantics and near-zero computation power at memory side. Existing indexes supporting disaggregated memory either suffer from low write performance, or require hardware modification.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604437.3604448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Memory disaggregation architecture physically separates CPU and memory into independent components, which are connected via high-speed RDMA networks, greatly improving resource utilization of database systems. However, such an architecture poses unique challenges to data indexing due to limited RDMA semantics and near-zero computation power at memory side. Existing indexes supporting disaggregated memory either suffer from low write performance, or require hardware modification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在分解内存上构建写优化树索引
内存分解架构将CPU和内存物理分离为独立的组件,通过高速RDMA网络连接,极大地提高了数据库系统的资源利用率。然而,由于有限的RDMA语义和内存端的计算能力接近于零,这种体系结构对数据索引提出了独特的挑战。支持分解内存的现有索引要么写性能很低,要么需要修改硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1