Julian Eiler, Christina Högl, M. Lindner, M. Bachmann, R. Schreiner
{"title":"Miniaturized Surface Dielectric Barrier Discharge Plasma Actuators for Application in Chemical Analysis Systems","authors":"Julian Eiler, Christina Högl, M. Lindner, M. Bachmann, R. Schreiner","doi":"10.1109/IVNC57695.2023.10188884","DOIUrl":null,"url":null,"abstract":"A new concept for a miniaturized planar ion source based on a surface dielectric barrier discharge (SDBD) is presented. A fabrication method based on a stamping process is described, and the plasma actuators are characterized based on their power in dependence of the applied voltage. The voltage for plasma ignition is approx. 1 kV with a maximum plasma power of 40 W/m at 3,4 kV.","PeriodicalId":346266,"journal":{"name":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC57695.2023.10188884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A new concept for a miniaturized planar ion source based on a surface dielectric barrier discharge (SDBD) is presented. A fabrication method based on a stamping process is described, and the plasma actuators are characterized based on their power in dependence of the applied voltage. The voltage for plasma ignition is approx. 1 kV with a maximum plasma power of 40 W/m at 3,4 kV.