Embedding social graphs from multiple national settings in common empirical opinion spaces

Pedro Ramaciotti, Zografoula Vagena
{"title":"Embedding social graphs from multiple national settings in common empirical opinion spaces","authors":"Pedro Ramaciotti, Zografoula Vagena","doi":"10.1109/ASONAM55673.2022.10068567","DOIUrl":null,"url":null,"abstract":"Ideological scaling is an ubiquitous tool for inferring political opinions of users in social networks, allowing to position a large number of users in left-right or liberal-conservative scales. More recent methods address the need, highlighted by social science research, to infer positions in additional social dimensions. These dimensions allow for the analysis of emerging divisions such as anti-elite sentiment, or attitudes towards globalization, among others. These methods propose to embed social networks in multi-dimensional attitudinal spaces, where dimensions stand as indicators of positive or negative attitudes towards several and separate issues of public debate. So far, these methods have been validated in the context of individual national settings. In this article we propose a method to embed a large number of social media users in multi-dimensional attitudinal spaces that are common to several countries, allowing for large-scale comparative studies. Additionally, we propose novel statistical benchmark validations that show the accuracy of the estimated positions. We illustrate our method on Twitter friendship networks in France, Germany, Italy, and Spain.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ideological scaling is an ubiquitous tool for inferring political opinions of users in social networks, allowing to position a large number of users in left-right or liberal-conservative scales. More recent methods address the need, highlighted by social science research, to infer positions in additional social dimensions. These dimensions allow for the analysis of emerging divisions such as anti-elite sentiment, or attitudes towards globalization, among others. These methods propose to embed social networks in multi-dimensional attitudinal spaces, where dimensions stand as indicators of positive or negative attitudes towards several and separate issues of public debate. So far, these methods have been validated in the context of individual national settings. In this article we propose a method to embed a large number of social media users in multi-dimensional attitudinal spaces that are common to several countries, allowing for large-scale comparative studies. Additionally, we propose novel statistical benchmark validations that show the accuracy of the estimated positions. We illustrate our method on Twitter friendship networks in France, Germany, Italy, and Spain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在共同的经验意见空间中嵌入来自多个国家背景的社会图谱
意识形态尺度是一种普遍存在的工具,用于推断社交网络中用户的政治观点,允许将大量用户定位在左右或自由-保守的尺度上。最近的方法解决了社会科学研究强调的需要,即推断其他社会维度的位置。这些维度允许对诸如反精英情绪或对全球化的态度等新兴分歧进行分析。这些方法建议在多维态度空间中嵌入社会网络,其中维度作为对若干和独立的公共辩论问题的积极或消极态度的指标。迄今为止,这些方法已在个别国家背景下得到验证。在本文中,我们提出了一种方法,将大量社交媒体用户嵌入到几个国家共同的多维态度空间中,以便进行大规模的比较研究。此外,我们提出了新的统计基准验证,显示估计位置的准确性。我们在法国、德国、意大利和西班牙的Twitter友谊网络上举例说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOGPlay: A Decentralized Crowd Journalism Application for Democratic News Production The Pursuit of Being Heard: An Unsupervised Approach to Narrative Detection in Online Protest ASONAM 2022 Tutorial I: Mining and Analysing Collaboration in git Repositories with git2net Multigraph transformation for community detection applied to financial services Whole-File Chunk-Based Deduplication Using Reinforcement Learning for Cloud Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1