{"title":"Technical Perspective - No PANE, No Gain","authors":"A. Hogan","doi":"10.1145/3542700.3542710","DOIUrl":null,"url":null,"abstract":"The machine learning community has traditionally been proactive in developing techniques for diverse types of data, such as text, audio, images, videos, time series, and, of course, matrices, tensors, etc. \"But what about graphs?\" some of us graph enthusiasts may have asked ourselves, dejectedly, before transforming our beautiful graph into a brutalistic table of numbers that bore little resemblance to its parent, nor the phenomena it represented, but could at least be shovelled into the machine learning frameworks of the time. Thankfully those days are coming to an end.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3542700.3542710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The machine learning community has traditionally been proactive in developing techniques for diverse types of data, such as text, audio, images, videos, time series, and, of course, matrices, tensors, etc. "But what about graphs?" some of us graph enthusiasts may have asked ourselves, dejectedly, before transforming our beautiful graph into a brutalistic table of numbers that bore little resemblance to its parent, nor the phenomena it represented, but could at least be shovelled into the machine learning frameworks of the time. Thankfully those days are coming to an end.