Estimation-informed, resource-aware robot navigation for environmental monitoring applications

Lonnie T. Parker, R. A. Coogle, A. Howard
{"title":"Estimation-informed, resource-aware robot navigation for environmental monitoring applications","authors":"Lonnie T. Parker, R. A. Coogle, A. Howard","doi":"10.1109/ICRA.2013.6630701","DOIUrl":null,"url":null,"abstract":"Environmental monitoring of spatially-distributed geo-physical processes (e.g., temperature, pressure, or humidity) requires efficient sampling schemes, particularly, when employing an autonomous mobile agent to execute the sampling task. Many approaches have considered optimal sampling strategies which specialize in minimizing estimation error, while others emphasize reducing resource usage, yet rarely are both of these performance parameters used concurrently to influence the navigation. This work discusses how a spatial estimation process and resource awareness are integrated to generate an informed navigation policy for collecting useful measurement information. We also enable a direct comparison between this informed navigation method and more common approaches using two performance metrics. We show that our informed navigation outperforms these approaches based on performance evaluation as a function of estimation error and resource usage for a useful range of coverage within the sampling area.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6630701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Environmental monitoring of spatially-distributed geo-physical processes (e.g., temperature, pressure, or humidity) requires efficient sampling schemes, particularly, when employing an autonomous mobile agent to execute the sampling task. Many approaches have considered optimal sampling strategies which specialize in minimizing estimation error, while others emphasize reducing resource usage, yet rarely are both of these performance parameters used concurrently to influence the navigation. This work discusses how a spatial estimation process and resource awareness are integrated to generate an informed navigation policy for collecting useful measurement information. We also enable a direct comparison between this informed navigation method and more common approaches using two performance metrics. We show that our informed navigation outperforms these approaches based on performance evaluation as a function of estimation error and resource usage for a useful range of coverage within the sampling area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于环境监测应用的预估信息、资源感知机器人导航
空间分布的地球物理过程(如温度、压力或湿度)的环境监测需要有效的采样方案,特别是当采用自主移动代理执行采样任务时。许多方法考虑了专注于最小化估计误差的最佳采样策略,而其他方法则强调减少资源使用,但很少同时使用这两个性能参数来影响导航。这项工作讨论了如何将空间估计过程和资源意识相结合,以生成收集有用测量信息的明智导航策略。我们还可以使用两个性能指标直接比较这种知情导航方法和更常见的方法。我们表明,我们的知情导航优于这些基于性能评估的方法,作为采样区域内有效覆盖范围的估计误差和资源使用的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Representation of vehicle dynamics in haptic teleoperation of aerial robots Adaptive visual tracking with reacquisition ability for arbitrary objects A novel method to simplify supervisor for AMS based on Petri nets and inequality analysis Human-robot cooperative object swinging Gravity compensation control of compliant joint systems with multiple drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1