Searching the forest: using decision trees as building blocks for evolutionary search in classification databases

S. Rouwhorst, A. Engelbrecht
{"title":"Searching the forest: using decision trees as building blocks for evolutionary search in classification databases","authors":"S. Rouwhorst, A. Engelbrecht","doi":"10.1109/CEC.2000.870357","DOIUrl":null,"url":null,"abstract":"A new evolutionary search algorithm, called BGP (Building-block approach to Genetic Programming), to be used for classification tasks in data mining, is introduced. It is different from existing evolutionary techniques in that it does not use indirect representations of a solution, such as bit strings or grammars. The algorithm uses decision trees of various sizes as individuals in the populations and operators, e.g. crossover, are performed directly on the trees. When compared to the C4.5 and CN2 induction algorithms on a benchmark set of problems, BGP shows very good results.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

A new evolutionary search algorithm, called BGP (Building-block approach to Genetic Programming), to be used for classification tasks in data mining, is introduced. It is different from existing evolutionary techniques in that it does not use indirect representations of a solution, such as bit strings or grammars. The algorithm uses decision trees of various sizes as individuals in the populations and operators, e.g. crossover, are performed directly on the trees. When compared to the C4.5 and CN2 induction algorithms on a benchmark set of problems, BGP shows very good results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搜索森林:使用决策树作为分类数据库进化搜索的构建块
介绍了一种新的进化搜索算法,称为BGP (Building-block approach to Genetic Programming),用于数据挖掘中的分类任务。它与现有的进化技术的不同之处在于,它不使用解决方案的间接表示,例如位字符串或语法。该算法使用不同大小的决策树作为种群中的个体,并直接在树上执行交叉等操作。在一组基准问题上与C4.5和CN2归纳算法进行比较,BGP显示出非常好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1