{"title":"A Low Area, Low Power 8-bit AES-CCM Authenticated Encryption Core in 180nm CMOS Process","authors":"Dao Van Lan, Nguyen Anh Thai, Hoang Van Phuc","doi":"10.25073/2588-1086/vnucsce.202","DOIUrl":null,"url":null,"abstract":"This paper presents a low area, low power AES-CCM authenticated encryption IP core with silicon demonstration in 180nm standard CMOS process. The proposed AES-CCM core combines a low area 8-bit single S-box AES encryption core, improved iterative structure and other optimized circuits. The implementation results show that the proposed AES-CCM core achieves very high resource efficiency with 6.5 kgates GE and the low power consumption of 11.6 µW/MHz while meeting the requirement of the operation speed for many applications including IEEE 802.15.6 WBANs. The detail implementation and optimization results are also presented and discussed.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a low area, low power AES-CCM authenticated encryption IP core with silicon demonstration in 180nm standard CMOS process. The proposed AES-CCM core combines a low area 8-bit single S-box AES encryption core, improved iterative structure and other optimized circuits. The implementation results show that the proposed AES-CCM core achieves very high resource efficiency with 6.5 kgates GE and the low power consumption of 11.6 µW/MHz while meeting the requirement of the operation speed for many applications including IEEE 802.15.6 WBANs. The detail implementation and optimization results are also presented and discussed.