25.2 A 16Gb Sub-1V 7.14Gb/s/pin LPDDR5 SDRAM Applying a Mosaic Architecture with a Short-Feedback 1-Tap DFE, an FSS Bus with Low-Level Swing and an Adaptively Controlled Body Biasing in a 3rd-Generation 10nm DRAM

Yong-Hun Kim, Hyung-Jin Kim, Jaemin Choi, M. Ahn, Dongkeon Lee, Seunghyun Cho, Dong-Yeon Park, Y.J. Park, Min-Soo Jang, Yongjun Kim, Jinyong Choi, Sung-Woo Yoon, Jaesu Jung, Jae-Koo Park, Jae-Woo Lee, D. Kwon, H. Cha, Si-Hyeong Cho, Seonghwan Kim, Jihwa You, Kyoung-Ho Kim, Dae-Hyun Kim, Byung-Cheol Kim, Young-Kwan Kim, Jun-Ho Kim, Seouk-Kyu Choi, Chankyung Kim, Byongwook Na, Hye-In Choi, Reum Oh, Jeong-Don Ihm, Seung-Jun Bae, N. Kim, Jung-Bae Lee
{"title":"25.2 A 16Gb Sub-1V 7.14Gb/s/pin LPDDR5 SDRAM Applying a Mosaic Architecture with a Short-Feedback 1-Tap DFE, an FSS Bus with Low-Level Swing and an Adaptively Controlled Body Biasing in a 3rd-Generation 10nm DRAM","authors":"Yong-Hun Kim, Hyung-Jin Kim, Jaemin Choi, M. Ahn, Dongkeon Lee, Seunghyun Cho, Dong-Yeon Park, Y.J. Park, Min-Soo Jang, Yongjun Kim, Jinyong Choi, Sung-Woo Yoon, Jaesu Jung, Jae-Koo Park, Jae-Woo Lee, D. Kwon, H. Cha, Si-Hyeong Cho, Seonghwan Kim, Jihwa You, Kyoung-Ho Kim, Dae-Hyun Kim, Byung-Cheol Kim, Young-Kwan Kim, Jun-Ho Kim, Seouk-Kyu Choi, Chankyung Kim, Byongwook Na, Hye-In Choi, Reum Oh, Jeong-Don Ihm, Seung-Jun Bae, N. Kim, Jung-Bae Lee","doi":"10.1109/ISSCC42613.2021.9366050","DOIUrl":null,"url":null,"abstract":"The demand for mobile DRAM has increased, with a requirement for high density, high data rates, and low-power consumption to support applications such as 5G communication, multiple cameras, and automotive. Thus, density has increased from 2Gb [1] to 16Gb [2] in LPDDR4 and LPDDR4X, but the maximum density for LPDDR5 is only 12Gb [3] due to the limited package size specification: such as a 496-ball FBGA. In this work, a mosaic architecture is introduced to increase the density to 16Gb, even in a limited package size. Additionally, the I/O performance is improved by shortening the length for the top metal, and a short-feedback sense amplifier (SA) with dedicated VREFs for a 1-tap DFE. The side effect of a mosaic architecture is the performance of the internal DRAM due to a 1.64× long bus line; however, this is mitigated by a fully-source-synchronous (FSS) bus scheme that is robust to PVT variation. In addition, to reduce the power consumption of the long bus line a low-level swing (LLS) scheme is used in low frequency mode. Furthermore, to enhance power efficiency and yield an adaptive-body-bias (ABB) scheme is introduced in a 3rd generation of a 10nm DRAM process.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9366050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The demand for mobile DRAM has increased, with a requirement for high density, high data rates, and low-power consumption to support applications such as 5G communication, multiple cameras, and automotive. Thus, density has increased from 2Gb [1] to 16Gb [2] in LPDDR4 and LPDDR4X, but the maximum density for LPDDR5 is only 12Gb [3] due to the limited package size specification: such as a 496-ball FBGA. In this work, a mosaic architecture is introduced to increase the density to 16Gb, even in a limited package size. Additionally, the I/O performance is improved by shortening the length for the top metal, and a short-feedback sense amplifier (SA) with dedicated VREFs for a 1-tap DFE. The side effect of a mosaic architecture is the performance of the internal DRAM due to a 1.64× long bus line; however, this is mitigated by a fully-source-synchronous (FSS) bus scheme that is robust to PVT variation. In addition, to reduce the power consumption of the long bus line a low-level swing (LLS) scheme is used in low frequency mode. Furthermore, to enhance power efficiency and yield an adaptive-body-bias (ABB) scheme is introduced in a 3rd generation of a 10nm DRAM process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
25.2第三代10nm DRAM中采用短反馈1分位DFE、低电平摆幅FSS总线和自适应控制体偏置的马赛克架构的16Gb Sub-1V 7.14Gb/s/引脚LPDDR5 SDRAM
随着对高密度、高数据速率和低功耗的需求的增加,移动DRAM的需求也在增加,以支持5G通信、多摄像头和汽车等应用。因此,LPDDR4和LPDDR4X的密度从2Gb[1]增加到16Gb[2],但由于封装尺寸规格的限制,LPDDR5的最大密度只有12Gb[3]:例如496球的FBGA。在这项工作中,引入了马赛克架构,即使在有限的封装尺寸下,也可以将密度提高到16Gb。此外,通过缩短顶部金属的长度和带有专用vref的短反馈感测放大器(SA)来提高I/O性能,用于1抽头DFE。镶嵌架构的副作用是由于1.64×长的总线线,导致内部DRAM的性能下降;然而,全源同步(FSS)总线方案对PVT变化具有鲁棒性,从而减轻了这种情况。此外,为了降低长母线的功耗,在低频模式下采用了低电平摆振(LLS)方案。此外,为了提高功率效率和产量,在第三代10nm DRAM工艺中引入了自适应体偏置(ABB)方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10.6 A 12b 16GS/s RF-Sampling Capacitive DAC for Multi-Band Soft-Radio Base-Station Applications with On-Chip Transmission-Line Matching Network in 16nm FinFET A 0.021mm2 PVT-Aware Digital-Flow-Compatible Adaptive Back-Biasing Regulator with Scalable Drivers Achieving 450% Frequency Boosting and 30% Power Reduction in 22nm FDSOI Technology 8.1 A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS 14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver ISSCC 2021 Index to Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1