Haytame Fallah, Emmanuel Bruno, P. Bellot, Elisabeth Murisasco
{"title":"Exploiting Label Dependencies for Multi-Label Document Classification Using Transformers","authors":"Haytame Fallah, Emmanuel Bruno, P. Bellot, Elisabeth Murisasco","doi":"10.1145/3573128.3609356","DOIUrl":null,"url":null,"abstract":"We introduce in this paper a new approach to improve deep learning-based architectures for multi-label document classification. Dependencies between labels are an essential factor in the multi-label context. Our proposed strategy takes advantage of the knowledge extracted from label co-occurrences. The proposed method consists in adding a regularization term to the loss function used for training the model, in a way that incorporates the label similarities given by the label co-occurrences to encourage the model to jointly predict labels that are likely to co-occur, and and not consider labels that are rarely present with each other. This allows the neural model to better capture label dependencies. Our approach was evaluated on three datasets: the standard AAPD dataset, a corpus of scientific abstracts and Reuters-21578, a collection of news articles, and a newly proposed multi-label dataset called arXiv-ACM. Our method demonstrates improved performance, setting a new state-of-the-art on all three datasets.","PeriodicalId":310776,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering 2023","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573128.3609356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce in this paper a new approach to improve deep learning-based architectures for multi-label document classification. Dependencies between labels are an essential factor in the multi-label context. Our proposed strategy takes advantage of the knowledge extracted from label co-occurrences. The proposed method consists in adding a regularization term to the loss function used for training the model, in a way that incorporates the label similarities given by the label co-occurrences to encourage the model to jointly predict labels that are likely to co-occur, and and not consider labels that are rarely present with each other. This allows the neural model to better capture label dependencies. Our approach was evaluated on three datasets: the standard AAPD dataset, a corpus of scientific abstracts and Reuters-21578, a collection of news articles, and a newly proposed multi-label dataset called arXiv-ACM. Our method demonstrates improved performance, setting a new state-of-the-art on all three datasets.