D. Saugnon, J. Tartarin, B. Franc, Hassan Maher, Francois Boone
{"title":"Fully Automated RF-Thermal Stress Workbench with S-Parameters Tracking for GaN Reliability Analysis","authors":"D. Saugnon, J. Tartarin, B. Franc, Hassan Maher, Francois Boone","doi":"10.23919/EUMIC.2018.8539919","DOIUrl":null,"url":null,"abstract":"The rapid development of III-V technologies for telecommunication and radar markets need the meeting of performances (power, frequency) criteria as well as reliability assessment. Nitride HEMT technologies are known to reveal a large variety of failure electrical signatures, and it is also largely accepted that multi-tools (multi physics) approaches is the only suitable way to understand the failure mechanisms and to improve the technologies. Experimental stress workbenches usually allow to track a given number of static/dynamic parameters, but specific characterization are only performed at initial and final steps on the devices. This paper proposes a new approach with S-parameters measurement performed during RF stresses without removing the devices under test (in a thermally controlled oven). Then intermediate knowledge of the electrical (small signal) behavior of the devices can be assessed, and crossed with large-signal and static time-dependent signatures.","PeriodicalId":248339,"journal":{"name":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2018.8539919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The rapid development of III-V technologies for telecommunication and radar markets need the meeting of performances (power, frequency) criteria as well as reliability assessment. Nitride HEMT technologies are known to reveal a large variety of failure electrical signatures, and it is also largely accepted that multi-tools (multi physics) approaches is the only suitable way to understand the failure mechanisms and to improve the technologies. Experimental stress workbenches usually allow to track a given number of static/dynamic parameters, but specific characterization are only performed at initial and final steps on the devices. This paper proposes a new approach with S-parameters measurement performed during RF stresses without removing the devices under test (in a thermally controlled oven). Then intermediate knowledge of the electrical (small signal) behavior of the devices can be assessed, and crossed with large-signal and static time-dependent signatures.