Mechanism design and dynamic simulation of high maneuverable mobile platform for wall-climbing robot

Hong Chen, Fen-fen Tian, G. Cao, Yan Liu, Nan-ning Xie, Tao Lin
{"title":"Mechanism design and dynamic simulation of high maneuverable mobile platform for wall-climbing robot","authors":"Hong Chen, Fen-fen Tian, G. Cao, Yan Liu, Nan-ning Xie, Tao Lin","doi":"10.1109/ICIST.2014.6920602","DOIUrl":null,"url":null,"abstract":"A high maneuverable mobile platform for wall climbing robot was developed based on Electromagnetic adsorption principle. The Dual-body mechanism was designed to improve maneuverability performance effectively. The mobile platform included electromagnetic adsorption mechanism and wheeled moving dual-body mechanism. By means of Solidworks three-dimensional model of mobile platform was established, and dynamic Simulations of obstacle negotiation on steel wall were performed. The simulation results indicated that the mobile platform not only can possess steering ability, but also can cross L-form and inverted L-form obstacle. The mechanism design provided high reference value to research wall climbing robot.","PeriodicalId":306383,"journal":{"name":"2014 4th IEEE International Conference on Information Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th IEEE International Conference on Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2014.6920602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A high maneuverable mobile platform for wall climbing robot was developed based on Electromagnetic adsorption principle. The Dual-body mechanism was designed to improve maneuverability performance effectively. The mobile platform included electromagnetic adsorption mechanism and wheeled moving dual-body mechanism. By means of Solidworks three-dimensional model of mobile platform was established, and dynamic Simulations of obstacle negotiation on steel wall were performed. The simulation results indicated that the mobile platform not only can possess steering ability, but also can cross L-form and inverted L-form obstacle. The mechanism design provided high reference value to research wall climbing robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高机动爬壁机器人移动平台机构设计与动力学仿真
基于电磁吸附原理,研制了一种高机动爬壁机器人移动平台。设计了双体机构,有效地提高了机动性能。移动平台包括电磁吸附机构和轮式移动双体机构。利用Solidworks建立了移动平台的三维模型,对移动平台在钢壁上越障进行了动态仿真。仿真结果表明,该移动平台不仅具有转向能力,而且能够通过l型和倒l型障碍物。该机构设计对爬壁机器人的研究具有较高的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined selective mapping and extended hamming codes for PAPR reduction in OFDM systems Outage analysis of two-way AF relaying systems with imperfect CSI and multiple interferers over Nakagami-m fading channels An empirical study of filter-based feature selection algorithms using noisy training data Using DTW to measure trajectory distance in grid space Parameter optimization for hyperspectral image compression algorithm of maximum error controllable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1