Automated neural network model selection algorithm for feedback linearization based control

K. Vassiljeva, E. Petlenkov, J. Belikov
{"title":"Automated neural network model selection algorithm for feedback linearization based control","authors":"K. Vassiljeva, E. Petlenkov, J. Belikov","doi":"10.1109/BEC.2010.5631152","DOIUrl":null,"url":null,"abstract":"For the best model identification a set of neural networks (NNs) must be trained. First of all it is necessary to obtain the optimal structure of the NN. In addition a good choice of the initial values of the NN parameters can be of tremendous help in a successful control application. Further fit of the model is evaluated using several control criteria, and the optimal among them is selected. This article presents an automated NN model selection method for control based on feedback linearization.","PeriodicalId":228594,"journal":{"name":"2010 12th Biennial Baltic Electronics Conference","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th Biennial Baltic Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BEC.2010.5631152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For the best model identification a set of neural networks (NNs) must be trained. First of all it is necessary to obtain the optimal structure of the NN. In addition a good choice of the initial values of the NN parameters can be of tremendous help in a successful control application. Further fit of the model is evaluated using several control criteria, and the optimal among them is selected. This article presents an automated NN model selection method for control based on feedback linearization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反馈线性化控制的自动神经网络模型选择算法
为了获得最佳的模型识别,必须训练一组神经网络(nn)。首先要得到神经网络的最优结构。此外,选择好神经网络参数的初始值对成功的控制应用有很大的帮助。利用多个控制准则对模型进行进一步的拟合评价,并从中选出最优的控制准则。提出了一种基于反馈线性化的自动神经网络模型选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SOC design for wireless communications Wireless photoplethysmography finger sensor probe Simple DSP interface for impedance spectroscopy of piezo-sensors Structural solution of reconfiguration based built-in self-test for analog and mixed-signal IC Hydrogen sensing performance of TiO2 nanotubes at room temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1