{"title":"Characteristics of Gate-All-Around Silicon Nanowire and Nanosheet MOSFETs with Various Spacers","authors":"S. Kola, Yiming Li, Narasimhulu Thoti","doi":"10.23919/SISPAD49475.2020.9241603","DOIUrl":null,"url":null,"abstract":"We estimate DC characteristics and single-charge trap (SCT) induced random telegraph noise (RTN) of gate-all-around (GAA) silicon nanowire (NW) and nanosheet (NS) metal-oxide-semiconductor field effect transistor (MOSFETs) for sub-5-nm nodes. Devices with various dielectric spacers from low- to high-κ including asymmetric dual spacers (ADS) are considered. More than 31% boost on the normalized on-state currents is observed for the explored devices with high-κ and ADS spacers. Similarly, for the normalized off-state currents, more than 50% reduction is achieved. The largest magnitude of the RTN (ΔID/ID×100%) is 6.7% for the nominal GAA Si NS MOSFET with an effective channel width of 40-nm.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We estimate DC characteristics and single-charge trap (SCT) induced random telegraph noise (RTN) of gate-all-around (GAA) silicon nanowire (NW) and nanosheet (NS) metal-oxide-semiconductor field effect transistor (MOSFETs) for sub-5-nm nodes. Devices with various dielectric spacers from low- to high-κ including asymmetric dual spacers (ADS) are considered. More than 31% boost on the normalized on-state currents is observed for the explored devices with high-κ and ADS spacers. Similarly, for the normalized off-state currents, more than 50% reduction is achieved. The largest magnitude of the RTN (ΔID/ID×100%) is 6.7% for the nominal GAA Si NS MOSFET with an effective channel width of 40-nm.