Hayden Andersen, Andrew Lensen, Will N. Browne, Yi Mei
{"title":"Evolving Counterfactual Explanations with Particle Swarm Optimization and Differential Evolution","authors":"Hayden Andersen, Andrew Lensen, Will N. Browne, Yi Mei","doi":"10.1109/CEC55065.2022.9870283","DOIUrl":null,"url":null,"abstract":"Counterfactual explanations are a popular eXplainable AI technique, used to provide contrastive answers to “what-if” questions. These explanations are consistent with the way that an everyday person will explain an event, and have been shown to satisfy the ‘right to explanation’ of the European data regulations. Despite this, current work to generate counterfactual explanations either makes assumptions about the model being explained or utlises algorithms that perform suboptimally on continuous data. This work presents two novel algorithms to generate counterfactual explanations using Particle Swarm Optimization (PSO) and Differential Evolution (DE). These are shown to provide effective post-hoc explanations that make no assumptions about the underlying model or data structure. In particular, PSO is shown to generate counterfactual explanations that utilise significantly fewer features to generate sparser explanations when compared to previous related work.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Counterfactual explanations are a popular eXplainable AI technique, used to provide contrastive answers to “what-if” questions. These explanations are consistent with the way that an everyday person will explain an event, and have been shown to satisfy the ‘right to explanation’ of the European data regulations. Despite this, current work to generate counterfactual explanations either makes assumptions about the model being explained or utlises algorithms that perform suboptimally on continuous data. This work presents two novel algorithms to generate counterfactual explanations using Particle Swarm Optimization (PSO) and Differential Evolution (DE). These are shown to provide effective post-hoc explanations that make no assumptions about the underlying model or data structure. In particular, PSO is shown to generate counterfactual explanations that utilise significantly fewer features to generate sparser explanations when compared to previous related work.