Predictive Compact Modeling of Abnormal LDMOS Characteristics Due to Overlap-Length Modification

T. Iizuka, D. Navarro, M. Miura-Mattausch, Hidenori Kikuchihara, H. Mattausch, Daniela Rus
{"title":"Predictive Compact Modeling of Abnormal LDMOS Characteristics Due to Overlap-Length Modification","authors":"T. Iizuka, D. Navarro, M. Miura-Mattausch, Hidenori Kikuchihara, H. Mattausch, Daniela Rus","doi":"10.23919/SISPAD49475.2020.9241665","DOIUrl":null,"url":null,"abstract":"Further compact-model development for LDMOS is reported, enabling concurrent device and circuit optimizations by only varying the ratio between gate-overlap length $(L_{\\mathrm{o}\\mathrm{v}\\mathrm{e}\\mathrm{r}})$ and resistive-drift length $(L_{\\mathrm{drift}})$. Different from the conventional carrier-dynamics understanding within these two regions, LDMOS shows abnormal characteristics during such a ratio variation. The pinch-off condition occurs under the gate overlap region, and the pinch-off point is found to move along $L_{\\mathrm{o}\\mathrm{v}\\mathrm{e}\\mathrm{r}}$ with increased drain voltage, even under the accumulation condition. This means that carrier conductivity is no longer controlled by the gate voltage but by the drain voltage. The precise pinch-off condition is determined by the field balancing within gate-overlap and resistive-drift regions. The pinch-off length $(\\Delta L)$ within $L_{\\mathrm{o}\\mathrm{v}\\mathrm{e}\\mathrm{r}}$ sustains $V_{\\mathrm{ds}}$ together with $L_{\\mathrm{drift}}$. Thus, the pinch-off region contributes as a part of $L_{\\mathrm{drift}}$ and improves the device’s high-voltage applicability. A new model is developed to describe this balancing phenomenon analytically, where the key physical quantity is $\\Delta L$. The developed $\\Delta L$ model considers the potential distribution along $L_{\\mathrm{o}\\mathrm{v}\\mathrm{e}\\mathrm{r}}$ together with $L_{\\mathrm{drift}}$. At the pinch-off point, the field induced by $V_{\\mathrm{g}s}$ and that by $V_{\\mathrm{ds}}$ are assumed to be equal, which derives an analytical description for $\\Delta L$. Evaluation results with the developed model are verified with 2D-numerical-device-simulation results.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Further compact-model development for LDMOS is reported, enabling concurrent device and circuit optimizations by only varying the ratio between gate-overlap length $(L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}})$ and resistive-drift length $(L_{\mathrm{drift}})$. Different from the conventional carrier-dynamics understanding within these two regions, LDMOS shows abnormal characteristics during such a ratio variation. The pinch-off condition occurs under the gate overlap region, and the pinch-off point is found to move along $L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$ with increased drain voltage, even under the accumulation condition. This means that carrier conductivity is no longer controlled by the gate voltage but by the drain voltage. The precise pinch-off condition is determined by the field balancing within gate-overlap and resistive-drift regions. The pinch-off length $(\Delta L)$ within $L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$ sustains $V_{\mathrm{ds}}$ together with $L_{\mathrm{drift}}$. Thus, the pinch-off region contributes as a part of $L_{\mathrm{drift}}$ and improves the device’s high-voltage applicability. A new model is developed to describe this balancing phenomenon analytically, where the key physical quantity is $\Delta L$. The developed $\Delta L$ model considers the potential distribution along $L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$ together with $L_{\mathrm{drift}}$. At the pinch-off point, the field induced by $V_{\mathrm{g}s}$ and that by $V_{\mathrm{ds}}$ are assumed to be equal, which derives an analytical description for $\Delta L$. Evaluation results with the developed model are verified with 2D-numerical-device-simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由于重叠长度修改导致的LDMOS异常特性的预测紧凑建模
本文还报道了LDMOS的进一步紧凑模型开发,仅通过改变栅极重叠长度$(L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}})$和电阻漂移长度$(L_{\mathrm{drift}})$之间的比值,即可实现器件和电路的并行优化。与传统的载流子动力学在这两个区域的理解不同,LDMOS在这种比率变化中表现出异常特征。当漏极电压增加时,即使在累加条件下,截断点也会沿着$L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$移动。这意味着载流子电导率不再由栅极电压控制,而是由漏极电压控制。精确的掐断条件由栅极重叠和电阻漂移区域内的场平衡决定。在$L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$内的截断长度$(\Delta L)$维持$V_{\mathrm{ds}}$与$L_{\mathrm{drift}}$。因此,截断区作为$L_{\ mathm {drift}}$的一部分做出了贡献,并提高了器件的高压适用性。建立了一个新的模型来解析地描述这种平衡现象,其中关键物理量是$\Delta L$。开发的$\Delta L$模型考虑沿$L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$和$L_{\mathrm{drift}}$的潜在分布。在截断点,假设$V_{\ mathm {g}s}$和$V_{\ mathm {ds}}$诱导的场相等,从而导出$\Delta L$的解析描述。用二维数值装置仿真结果验证了所建立模型的评价结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Device Degradation Estimation by Machine Learning of Gate Waveforms Numerical Solution of the Constrained Wigner Equation Nanoscale FET: How To Make Atomistic Simulation Versatile, Predictive, and Fast at 5nm Node and Below Fully Analog ReRAM Neuromorphic Circuit Optimization using DTCO Simulation Framework Analytical Formulae for the Surface Green’s Functions of Graphene and 1T’ MoS2 Nanoribbons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1