Analyzing Voice Quality with Multi-Dimensional Voice Program for Disease Determination

Rahmi Liza, Chen-Kun Tsung
{"title":"Analyzing Voice Quality with Multi-Dimensional Voice Program for Disease Determination","authors":"Rahmi Liza, Chen-Kun Tsung","doi":"10.1109/IS3C57901.2023.00054","DOIUrl":null,"url":null,"abstract":"Multi-Dimensional Voice Program (MDVP) parameters are very popular among physicians/clinicians to detect vocal pathologies and analyze various diseases of the vocal cords. In this paper, voice pathologies are automatically detected using the parameters of the MDVP. However, MDVP is commercial software, so this work is trying to build MDVP using Python to extract MDVP parameters useful for various experiments, automatic detection of sound pathologies, and automatic classification of voice recognition. This study evaluates MDVP parameters and applies the XGBoost model as a classification method to analyze and classify diseases. This work considers three sample data, polyps, nodules, and Reinke edema, popular in clinical vocal cords diseases, from Saarbruecken Voice Database (SVD) for data testing and training. Test results demonstrate the excellent ability of MDVP’s parameter extraction to identify healthy voices and obtain accurate classification results to discriminate between healthy voices and pathological voices. The best overall accuracy is 98% using the XGBoost classifier.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C57901.2023.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-Dimensional Voice Program (MDVP) parameters are very popular among physicians/clinicians to detect vocal pathologies and analyze various diseases of the vocal cords. In this paper, voice pathologies are automatically detected using the parameters of the MDVP. However, MDVP is commercial software, so this work is trying to build MDVP using Python to extract MDVP parameters useful for various experiments, automatic detection of sound pathologies, and automatic classification of voice recognition. This study evaluates MDVP parameters and applies the XGBoost model as a classification method to analyze and classify diseases. This work considers three sample data, polyps, nodules, and Reinke edema, popular in clinical vocal cords diseases, from Saarbruecken Voice Database (SVD) for data testing and training. Test results demonstrate the excellent ability of MDVP’s parameter extraction to identify healthy voices and obtain accurate classification results to discriminate between healthy voices and pathological voices. The best overall accuracy is 98% using the XGBoost classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用多维语音程序分析语音质量用于疾病诊断
多维声音程序(MDVP)参数在医生/临床医生中非常流行,用于检测声带病理和分析各种声带疾病。本文利用MDVP的参数自动检测语音病理。然而,MDVP是商业软件,因此本工作试图使用Python构建MDVP,以提取对各种实验有用的MDVP参数,自动检测声音病理,以及语音识别的自动分类。本研究对MDVP参数进行评价,并将XGBoost模型作为一种分类方法对疾病进行分析和分类。本文从Saarbruecken Voice Database (SVD)中选取临床声带疾病中常见的息肉、结节和Reinke水肿三种样本数据进行数据测试和训练。实验结果表明,MDVP的参数提取方法能够很好地识别健康声音,并获得准确的分类结果来区分健康声音和病理声音。使用XGBoost分类器,最佳的总体准确率为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of Coordinated Frequency Control Technologies for Wind Turbines, HVDC and Energy Storage Systems Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images A Broadband Millimeter-Wave 5G Low Noise Amplifier Design in 22 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) CMOS Wearable PVDF-TrFE-based Pressure Sensors for Throat Vibrations and Arterial Pulses Monitoring Fast Detection of Fabric Defects based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1