Parameter identification of thermoeletric modules using particle swarm optimization

G. DanielR.Ojeda, L. D. Almeida, O. A. Vilcanqui
{"title":"Parameter identification of thermoeletric modules using particle swarm optimization","authors":"G. DanielR.Ojeda, L. D. Almeida, O. A. Vilcanqui","doi":"10.1109/I2MTC.2015.7151373","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology to estimate thermoelectric module (TEM) internal parameters based on particle swarm optimization (PSO) algorithm. To obtain the correct TEM representation, it is necessary a proper model identification procedure to represent the TEM operation, both in DC and other relevant frequencies. Classical methods for linear parameter estimation are not suitable for the nonlinear TEM characteristics of the proposed model. We devise a model with twenty-one parameters, which represent parts of the two TEMs employed, including top, lower and middle layers and heat-sinks. The TEM is excited using an electrical current signal with power spectral density of a white noise, and the temperature response is adopted as output for the PSO algorithm to make the estimation. For numerical stability and proper estimation, the white noise excitation is filtered before, to obtain a dynamically persistent signal with high and low frequencies components. Simulation results show the effectiveness of the PSO in TEM parameters estimation.","PeriodicalId":424006,"journal":{"name":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2015.7151373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a methodology to estimate thermoelectric module (TEM) internal parameters based on particle swarm optimization (PSO) algorithm. To obtain the correct TEM representation, it is necessary a proper model identification procedure to represent the TEM operation, both in DC and other relevant frequencies. Classical methods for linear parameter estimation are not suitable for the nonlinear TEM characteristics of the proposed model. We devise a model with twenty-one parameters, which represent parts of the two TEMs employed, including top, lower and middle layers and heat-sinks. The TEM is excited using an electrical current signal with power spectral density of a white noise, and the temperature response is adopted as output for the PSO algorithm to make the estimation. For numerical stability and proper estimation, the white noise excitation is filtered before, to obtain a dynamically persistent signal with high and low frequencies components. Simulation results show the effectiveness of the PSO in TEM parameters estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法的热电模块参数辨识
提出了一种基于粒子群优化算法的热电模块内部参数估计方法。为了获得正确的瞬变电磁法表示,需要一个适当的模型识别程序来表示直流和其他相关频率下的瞬变电磁法操作。经典的线性参数估计方法不适用于该模型的非线性瞬变电磁特性。我们设计了一个有21个参数的模型,这些参数代表了所使用的两个tem的部分,包括顶层,下层和中间层以及散热器。用功率谱密度为白噪声的电流信号激励TEM,将温度响应作为PSO算法的输出进行估计。为了数值的稳定性和正确的估计,在此之前滤波了白噪声激励,得到一个具有高低频分量的动态持久信号。仿真结果表明了粒子群算法在TEM参数估计中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward a unified framework for static and dynamic measurements High Throughput Screening System for screening of 3D cell cultures An improved spectral approach to estimate the integral non-linearity of analog-to-digital converters Rail health monitoring using acoustic emission technique based on NMF and RVM Digital system for monitoring volcanic seismicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1