A graph-theoretical clustering method for detecting clusters of micro-calcifications in mammographic images

L. Cordella, G. Percannella, Carlo Sansone, M. Vento
{"title":"A graph-theoretical clustering method for detecting clusters of micro-calcifications in mammographic images","authors":"L. Cordella, G. Percannella, Carlo Sansone, M. Vento","doi":"10.1109/CBMS.2005.8","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于检测乳房x线摄影图像中微钙化簇的图理论聚类方法
本文提出了一种基于图理论聚类分析的乳房x线影像微钙化簇自动发现方法。它应用于微钙化检测阶段后的图像,能够应对每种自动检测算法产生的不可避免的假阳性。该方法已在一个包含40张乳房x线摄影图像的标准数据库中进行了测试,结果表明,即使在检测阶段产生了几个假阳性,该方法也非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov model-based clustering for efficient patient care Incremental learning of ensemble classifiers on ECG data Grid-enabled workflows for data intensive medical applications Case-based tissue classification for monitoring leg ulcer healing Optimisation of neural network training through pre-establishment of synaptic weights applied to body surface mapping classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1