Evaluation of Extremist Cohesion in a Darknet Forum Using ERGM and LDA

Mohammed Rashed, J. Piorkowski, I. McCulloh
{"title":"Evaluation of Extremist Cohesion in a Darknet Forum Using ERGM and LDA","authors":"Mohammed Rashed, J. Piorkowski, I. McCulloh","doi":"10.1145/3341161.3343532","DOIUrl":null,"url":null,"abstract":"ISIS and similar extremist communities are increasingly using forums in the darknet to connect with each other and spread news and propaganda. In this paper, we attempt to understand their network in an online forum by using descriptive statistics, an exponential random graph model (ERGM) and Topic Modeling. Our analysis shows how the cohesion between active members forms and grows over time and under certain thread topics. We find that the top attendants of the forum have high centrality measures and other attributes of influencers.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3343532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

ISIS and similar extremist communities are increasingly using forums in the darknet to connect with each other and spread news and propaganda. In this paper, we attempt to understand their network in an online forum by using descriptive statistics, an exponential random graph model (ERGM) and Topic Modeling. Our analysis shows how the cohesion between active members forms and grows over time and under certain thread topics. We find that the top attendants of the forum have high centrality measures and other attributes of influencers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ERGM和LDA的暗网论坛极值内聚评价
ISIS和类似的极端主义社区越来越多地利用暗网论坛相互联系,传播新闻和宣传。在本文中,我们试图通过描述性统计,指数随机图模型(ERGM)和主题建模来理解他们在在线论坛中的网络。我们的分析显示了活跃成员之间的凝聚力是如何随着时间的推移和在特定的线程主题下形成和增长的。我们发现,论坛的顶级参与者具有较高的中心性度量和影响者的其他属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural-Brane: An inductive approach for attributed network embedding Customer Recommendation Based on Profile Matching and Customized Campaigns in On-Line Social Networks Characterizing and Detecting Livestreaming Chatbots Two Decades of Network Science: as seen through the co-authorship network of network scientists Show me your friends, and I will tell you whom you vote for: Predicting voting behavior in social networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1