A Derivatives Trading Recommendation System: the Mid-Curve Calendar Spread Case

Adriano Soares Koshiyama, Nikan B. Firoozye, P. Treleaven
{"title":"A Derivatives Trading Recommendation System: the Mid-Curve Calendar Spread Case","authors":"Adriano Soares Koshiyama, Nikan B. Firoozye, P. Treleaven","doi":"10.2139/ssrn.3269496","DOIUrl":null,"url":null,"abstract":"Derivative traders are usually required to scan through hundreds, even thousands of possible trades on a daily basis. Up to now, not a single solution is available to aid in their job. Hence, this work aims to develop a trading recommendation system, and apply this system to the so-called Mid-Curve Calendar Spread (MCCS). To suggest that such approach is feasible, we used a list of 35 different types of MCCS; a total of 11 predictive models; and 4 benchmark models. Our results suggest that linear regression with lasso regularisation compared favourably to other approaches from a predictive and interpretability perspective.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3269496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Derivative traders are usually required to scan through hundreds, even thousands of possible trades on a daily basis. Up to now, not a single solution is available to aid in their job. Hence, this work aims to develop a trading recommendation system, and apply this system to the so-called Mid-Curve Calendar Spread (MCCS). To suggest that such approach is feasible, we used a list of 35 different types of MCCS; a total of 11 predictive models; and 4 benchmark models. Our results suggest that linear regression with lasso regularisation compared favourably to other approaches from a predictive and interpretability perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衍生品交易推荐系统:中曲线日历点差案例
衍生品交易员通常需要每天浏览数百甚至数千笔可能的交易。到目前为止,没有一个解决方案可以帮助他们的工作。因此,本工作旨在开发一个交易推荐系统,并将该系统应用于所谓的中曲线日历点差(MCCS)。为了证明这种方法是可行的,我们使用了35种不同类型的mcs;共有11个预测模型;4个基准模型。我们的研究结果表明,从预测性和可解释性的角度来看,与lasso正则化的线性回归相比,其他方法更有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing The Implicit Model Selection Tradeoff Troubleshooting: a Dynamic Solution for Achieving Reliable Fault Detection by Combining Augmented Reality and Machine Learning Policy Optimization Using Semiparametric Models for Dynamic Pricing Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games Deep Learning under Model Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1