On Evaluating Energy Efficient Algorithms for Internet of Things Networks

Sirine Rabah, A. Zaier, H. Dahman
{"title":"On Evaluating Energy Efficient Algorithms for Internet of Things Networks","authors":"Sirine Rabah, A. Zaier, H. Dahman","doi":"10.1109/mms48040.2019.9157300","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) is a new paradigm pulling great interest in the modern wireless Communications domain. However, in some scenarios, the performance of IoT network is limited by energy constrained devices. For improve the energy efficiency of IoT network, researchers have suggested different approaches based on clustering, where the cluster heads (CHs) selection has significant effect on the network performance. In this paper, we review and compare different energy-efficient clustering protocols for IoT network, i.e Low-Energy Adaptive Clustering Hierarchy $(LEACH)$, Particle Swarm Optimization $(PSO)$ and Genetic Algorithms $(GA)$. Besides we investigate the extent of their effectiveness to prolong network lifetime. The results obtained from the implementation in MATLAB show that GA performs better than PSO and LEACH in improving energy consumption and also increasing the number of live nodes within different rounds.","PeriodicalId":373813,"journal":{"name":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mms48040.2019.9157300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Things (IoT) is a new paradigm pulling great interest in the modern wireless Communications domain. However, in some scenarios, the performance of IoT network is limited by energy constrained devices. For improve the energy efficiency of IoT network, researchers have suggested different approaches based on clustering, where the cluster heads (CHs) selection has significant effect on the network performance. In this paper, we review and compare different energy-efficient clustering protocols for IoT network, i.e Low-Energy Adaptive Clustering Hierarchy $(LEACH)$, Particle Swarm Optimization $(PSO)$ and Genetic Algorithms $(GA)$. Besides we investigate the extent of their effectiveness to prolong network lifetime. The results obtained from the implementation in MATLAB show that GA performs better than PSO and LEACH in improving energy consumption and also increasing the number of live nodes within different rounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网网络节能算法评价研究
物联网(IoT)是现代无线通信领域的一个新范式。然而,在某些情况下,物联网网络的性能受到能量受限设备的限制。为了提高物联网网络的能源效率,研究人员提出了基于聚类的不同方法,其中簇头(CHs)的选择对网络性能有重要影响。在本文中,我们回顾并比较了物联网网络中不同的节能聚类协议,即低能量自适应聚类层次(LEACH)、粒子群优化(PSO)和遗传算法(GA)。此外,我们还研究了它们对延长网络寿命的有效性程度。在MATLAB中实现的结果表明,遗传算法在改善能量消耗和增加不同轮内活节点数量方面优于PSO和LEACH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low Profile and High Isolation MIMO Antenna for WLAN Application Terahertz Substrate Integrated Waveguide Wideband Antenna for Medical Imaging and Satellite Communications Applications Raspberry Pi-based smart platform for data acquisition, supervision and management of a hybrid PV/WT/Batteries system GaN based Driver and Power Amplifier MMICs for X-Band Transceiver Modules GaN HEMT Based MMIC High Gain Low-Noise Amplifiers for S-Band Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1