Life time prediction of anisotropic conductive adhesive joints during temperature cycling for electronics interconnect

J. Liu
{"title":"Life time prediction of anisotropic conductive adhesive joints during temperature cycling for electronics interconnect","authors":"J. Liu","doi":"10.1109/POLYTR.2001.973282","DOIUrl":null,"url":null,"abstract":"A theoretical model for lifetime prediction of anisotropic conductive adhesive joints during temperature cycling is developed. The model is simple and elegant in the way that it only needs data from two resistance measurements and yet is able to predict the total cyclic life to failure. One of the resistance values chosen is at zero cycles, before the testing, and the other one can be chosen at any given number of temperature cycles. This implies that one can perform a limited number of test cycles and can therefore save a lot of testing time. The model is based on the hypothesis that the anisotropic conductive joint can be treated as a pressure sensitive Holm contact and that the conductivity of the contact is a function of the pressure on the contact point. Finally, the model is based on the fact that a crack is formed during the cycling. The resistance of the joint increases as a function of the increasing crack length and the crack length in turn is a function of the number of cycles.","PeriodicalId":282338,"journal":{"name":"First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. Incorporating POLY, PEP & Adhesives in Electronics. Proceedings (Cat. No.01TH8592)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. Incorporating POLY, PEP & Adhesives in Electronics. Proceedings (Cat. No.01TH8592)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POLYTR.2001.973282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A theoretical model for lifetime prediction of anisotropic conductive adhesive joints during temperature cycling is developed. The model is simple and elegant in the way that it only needs data from two resistance measurements and yet is able to predict the total cyclic life to failure. One of the resistance values chosen is at zero cycles, before the testing, and the other one can be chosen at any given number of temperature cycles. This implies that one can perform a limited number of test cycles and can therefore save a lot of testing time. The model is based on the hypothesis that the anisotropic conductive joint can be treated as a pressure sensitive Holm contact and that the conductivity of the contact is a function of the pressure on the contact point. Finally, the model is based on the fact that a crack is formed during the cycling. The resistance of the joint increases as a function of the increasing crack length and the crack length in turn is a function of the number of cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子互连温度循环过程中各向异性导电胶接头寿命预测
建立了温度循环作用下各向异性导电胶接头寿命预测的理论模型。该模型简单而优雅,因为它只需要两次电阻测量的数据,但却能够预测到失效的总循环寿命。在测试之前,选择的一个电阻值是在零周期,另一个可以在任何给定的温度周期下选择。这意味着可以执行有限数量的测试周期,因此可以节省大量的测试时间。该模型基于这样的假设,即各向异性导电接头可以被视为压力敏感的霍尔姆接触,并且接触的电导率是接触点上压力的函数。最后,该模型是基于循环过程中产生裂纹的事实。节点的阻力随裂纹长度的增加而增加,而裂纹长度又随循环次数的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anisotropy of the optical and electrical properties of highly-oriented polyfluorenes Interfacial fracture toughness tests suited for reliability enhancements of advanced plastic packages Calibrate piezoresistive stress sensors through the assembled structure Polymeric materials for adaptronic fibre modules Trend of solder-less joint in flip chip bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1