Team optimization of cooperating systems: application to maximal area coverage

Jae-Byung Jung, M. El-Sharkawi, G. Anderson, R. Miyamoto, R. Marks, W. Fox, C. Eggen
{"title":"Team optimization of cooperating systems: application to maximal area coverage","authors":"Jae-Byung Jung, M. El-Sharkawi, G. Anderson, R. Miyamoto, R. Marks, W. Fox, C. Eggen","doi":"10.1109/IJCNN.2001.938510","DOIUrl":null,"url":null,"abstract":"The composite effort of the system team, rather, is significantly more important than a single player's individual performance. We consider the case wherein each player's performance is tuned to result in maximal team performance for the specific case of maximal area coverage (MAC). The approach is first illustrated through solution of MAC by a fixed number of deformable shapes. An application to sonar is then presented. Here, sonar control parameters determine a range-depth area of coverage. The coverage is also affected by known but uncontrollable environmental parameters. The problem is to determine K sets of sonar ping parameters that result in MAC. The forward problem of determining coverage given control and environmental parameters is computationally intensive. To facilitate real time cooperative optimization among a number of such systems, the sonar input-output is captured in a feedforward layered perceptron neural network.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The composite effort of the system team, rather, is significantly more important than a single player's individual performance. We consider the case wherein each player's performance is tuned to result in maximal team performance for the specific case of maximal area coverage (MAC). The approach is first illustrated through solution of MAC by a fixed number of deformable shapes. An application to sonar is then presented. Here, sonar control parameters determine a range-depth area of coverage. The coverage is also affected by known but uncontrollable environmental parameters. The problem is to determine K sets of sonar ping parameters that result in MAC. The forward problem of determining coverage given control and environmental parameters is computationally intensive. To facilitate real time cooperative optimization among a number of such systems, the sonar input-output is captured in a feedforward layered perceptron neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协作系统的团队优化:应用于最大区域覆盖
相反,系统团队的综合努力比单个参与者的个人表现重要得多。我们考虑这样一种情况,即每个球员的表现都被调整为最大区域覆盖(MAC)的特定情况下的最大团队表现。该方法首先通过用固定数量的可变形形状求解MAC来说明。然后介绍了在声纳中的应用。在这里,声纳控制参数确定覆盖范围-深度区域。覆盖范围还受到已知但不可控的环境参数的影响。问题是确定导致MAC的K组声纳ping参数。确定给定控制和环境参数的覆盖范围的前向问题是计算密集型的。为了促进多个系统之间的实时协同优化,声纳的输入输出被捕获在一个前馈分层感知器神经网络中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1