{"title":"Modeling the influence of corona discharge on High-Voltage surges propagating along Transmission-Lines using TLM","authors":"John L. Evans, David W. P. Thomas, S. Greedy","doi":"10.1109/ISEMC.2015.7256299","DOIUrl":null,"url":null,"abstract":"The effects of corona discharge on High-Voltage (HV) surges propagating on a single-wire transmission-line are demonstrated using the Transmission-Line Modeling technique (TLM). In particular, the effects can be demonstrated around a wire represented by short-circuited nodes and also using an Embedded-Wire Symmetrical Condensed Node (EW-SCN). The latter is seen to be ideally suited for adaptation necessary to incorporate such parameters relevant to corona inception. Calculations are based on a mathematical model proposed by Cooray (2000), that uses changes in voltage and charge density to describe corona, and a simplified model for corona simulation proposed by Thang et al (2012) that uses the addition of conductance to a FDTD mesh to obtain the desired result. The adaptations to the EW-SCN remain loyal to the transmission-line equations derived by Cooray and Neethayi (2008) that accurately describe the changes on a line in various representations e.g. dynamic capacitance accompanied with a dynamic conductance.","PeriodicalId":412708,"journal":{"name":"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2015.7256299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The effects of corona discharge on High-Voltage (HV) surges propagating on a single-wire transmission-line are demonstrated using the Transmission-Line Modeling technique (TLM). In particular, the effects can be demonstrated around a wire represented by short-circuited nodes and also using an Embedded-Wire Symmetrical Condensed Node (EW-SCN). The latter is seen to be ideally suited for adaptation necessary to incorporate such parameters relevant to corona inception. Calculations are based on a mathematical model proposed by Cooray (2000), that uses changes in voltage and charge density to describe corona, and a simplified model for corona simulation proposed by Thang et al (2012) that uses the addition of conductance to a FDTD mesh to obtain the desired result. The adaptations to the EW-SCN remain loyal to the transmission-line equations derived by Cooray and Neethayi (2008) that accurately describe the changes on a line in various representations e.g. dynamic capacitance accompanied with a dynamic conductance.