Sensors for Automotive Remote Road Surface Classification

A. Bystrov, E. Hoare, Thuy-Yung Tran, N. Clarke, M. Gashinova, M. Cherniakov
{"title":"Sensors for Automotive Remote Road Surface Classification","authors":"A. Bystrov, E. Hoare, Thuy-Yung Tran, N. Clarke, M. Gashinova, M. Cherniakov","doi":"10.1109/ICVES.2018.8519499","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the common remote sensing technologies in terms of their application for road surface classification. The presence of surface classification system in a vehicle will increase the safety of driving, especially in adverse weather conditions, as well as when driving offroad. The paper presents an overview of the application of optical, laser, ultrasonic, and microwave sensors for surface classification. From the analysis it follows that sensor data fusion allows obtaining more accurate and reliable results.","PeriodicalId":203807,"journal":{"name":"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2018.8519499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we compare the common remote sensing technologies in terms of their application for road surface classification. The presence of surface classification system in a vehicle will increase the safety of driving, especially in adverse weather conditions, as well as when driving offroad. The paper presents an overview of the application of optical, laser, ultrasonic, and microwave sensors for surface classification. From the analysis it follows that sensor data fusion allows obtaining more accurate and reliable results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车远程路面分类传感器
本文比较了几种常用的遥感技术在路面分类中的应用。车辆表面分类系统的存在将提高驾驶的安全性,特别是在恶劣的天气条件下,以及在越野驾驶时。本文综述了光学、激光、超声和微波传感器在表面分类中的应用。分析表明,传感器数据融合可以获得更准确、更可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey: Engineering Challenges to Implement VANET Security Revisiting Gaussian Mixture Models for Driver Identification On the Impact of Platooning Maneuvers on Traffic Improvement of Pedestrian Positioning Precision by Using Spatial Correlation of Multipath Error Dense Spatial Translation Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1