Parameter tuning in modeling and simulations by using swarm intelligence optimization algorithms

R. Tan, Şebnem Bora
{"title":"Parameter tuning in modeling and simulations by using swarm intelligence optimization algorithms","authors":"R. Tan, Şebnem Bora","doi":"10.1109/CICN.2017.8319375","DOIUrl":null,"url":null,"abstract":"Modeling and simulation of real-world environments has in recent times being widely used. The modeling of environments whose examination in particular is difficult and the examination via the model becomes easier. The parameters of the modeled systems and the values they can obtain are quite large, and manual tuning is tedious and requires a lot of effort while it often it is almost impossible to get the desired results. For this reason, there is a need for the parameter space to be set. The studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in modeling and simulations. In this study, work has been done for a solution to be found to the problem of parameter tuning with swarm intelligence optimization algorithms Particle swarm optimization and Firefly algorithms. The performance of these algorithms in the parameter tuning process has been tested on 2 different agent based model studies. The performance of the algorithms has been observed by manually entering the parameters found for the model. According to the obtained results, it has been seen that the Firefly algorithm where the Particle swarm optimization algorithm works faster has better parameter values. With this study, the parameter tuning problem of the models in the different fields were solved.","PeriodicalId":339750,"journal":{"name":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2017.8319375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Modeling and simulation of real-world environments has in recent times being widely used. The modeling of environments whose examination in particular is difficult and the examination via the model becomes easier. The parameters of the modeled systems and the values they can obtain are quite large, and manual tuning is tedious and requires a lot of effort while it often it is almost impossible to get the desired results. For this reason, there is a need for the parameter space to be set. The studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in modeling and simulations. In this study, work has been done for a solution to be found to the problem of parameter tuning with swarm intelligence optimization algorithms Particle swarm optimization and Firefly algorithms. The performance of these algorithms in the parameter tuning process has been tested on 2 different agent based model studies. The performance of the algorithms has been observed by manually entering the parameters found for the model. According to the obtained results, it has been seen that the Firefly algorithm where the Particle swarm optimization algorithm works faster has better parameter values. With this study, the parameter tuning problem of the models in the different fields were solved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用群智能优化算法进行建模和仿真中的参数调整
对现实世界环境的建模和仿真近年来得到了广泛的应用。对环境进行建模,特别是对难以进行检查的环境进行建模,通过模型进行检查变得更加容易。建模系统的参数和它们可以获得的值非常大,手动调优是乏味的,需要大量的努力,而且通常几乎不可能得到期望的结果。因此,需要设置参数空间。回顾了近年来的研究成果,发现在建模和仿真中对参数整定问题的研究很少。本文研究了用群智能优化算法(Particle swarm optimization)和Firefly算法(Firefly algorithm)来解决参数调优问题。在两个不同的基于智能体的模型研究中测试了这些算法在参数调整过程中的性能。通过手动输入为模型找到的参数来观察算法的性能。从得到的结果可以看出,粒子群优化算法运行速度更快的Firefly算法具有更好的参数值。通过研究,解决了模型在不同领域的参数整定问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact dual band printed planar inverted-F antenna for wireless communications Implementing Diffie-Hellman key exchange method on logical key hierarchy for secure broadcast transmission Data analytics using cloud computing Feature selection for protein dihedral angle prediction Facial expression recognition using enhanced local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1