Epileptic network activity revealed by dynamic functional connectivity in simultaneous EEG-fMRI

M. Preti, Nora Leonardi, F. I. Karahanoğlu, F. Grouiller, M. Genetti, M. Seeck, S. Vulliémoz, D. Ville
{"title":"Epileptic network activity revealed by dynamic functional connectivity in simultaneous EEG-fMRI","authors":"M. Preti, Nora Leonardi, F. I. Karahanoğlu, F. Grouiller, M. Genetti, M. Seeck, S. Vulliémoz, D. Ville","doi":"10.1109/ISBI.2014.6867796","DOIUrl":null,"url":null,"abstract":"Recent findings highlighted the non-stationarity of brain functional connectivity (FC) during resting-state functional magnetic resonance imaging (fMRI), encouraging the development of methods allowing to explore brain network dynamics. This appears particularly relevant when dealing with brain diseases involving dynamic neuronal processes, like epilepsy. In this study, we introduce a new method to pinpoint connectivity changes related to epileptic activity by integrating EEG and dynamic FC information. To our knowledge, no previous work has attempted to integrate dFC with the epileptic activity from EEG. The detailed results obtained from the analysis of two patients successfully detected specific patterns of connections/disconnections related to the epileptic activity and highlighted the potential of a dynamic analysis for a better understanding of network organisation in epilepsy.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"11 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Recent findings highlighted the non-stationarity of brain functional connectivity (FC) during resting-state functional magnetic resonance imaging (fMRI), encouraging the development of methods allowing to explore brain network dynamics. This appears particularly relevant when dealing with brain diseases involving dynamic neuronal processes, like epilepsy. In this study, we introduce a new method to pinpoint connectivity changes related to epileptic activity by integrating EEG and dynamic FC information. To our knowledge, no previous work has attempted to integrate dFC with the epileptic activity from EEG. The detailed results obtained from the analysis of two patients successfully detected specific patterns of connections/disconnections related to the epileptic activity and highlighted the potential of a dynamic analysis for a better understanding of network organisation in epilepsy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时进行的EEG-fMRI动态功能连接显示的癫痫网络活动
最近的研究结果强调了静息状态功能磁共振成像(fMRI)期间脑功能连接(FC)的非平稳性,鼓励了探索脑网络动态的方法的发展。在处理涉及动态神经元过程的脑部疾病(如癫痫)时,这似乎特别相关。在这项研究中,我们引入了一种新的方法,通过整合EEG和动态FC信息来精确定位与癫痫活动相关的连接变化。据我们所知,以前没有工作试图将dFC与脑电图的癫痫活动结合起来。从对两名患者的分析中获得的详细结果成功地检测到与癫痫活动相关的连接/断开的特定模式,并强调了动态分析的潜力,以便更好地了解癫痫的网络组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1