Policy-Based Reinforcement Learning for Assortative Matching in Human Behavior Modeling

O. Deng, Q. Jin
{"title":"Policy-Based Reinforcement Learning for Assortative Matching in Human Behavior Modeling","authors":"O. Deng, Q. Jin","doi":"10.48550/arXiv.2211.03936","DOIUrl":null,"url":null,"abstract":"This paper explores human behavior in virtual networked communities, specifically individuals or groups' potential and expressive capacity to respond to internal and external stimuli, with assortative matching as a typical example. A modeling approach based on Multi-Agent Reinforcement Learning (MARL) is proposed, adding a multi-head attention function to the A3C algorithm to enhance learning effectiveness. This approach simulates human behavior in certain scenarios through various environmental parameter settings and agent action strategies. In our experiment, reinforcement learning is employed to serve specific agents that learn from environment status and competitor behaviors, optimizing strategies to achieve better results. The simulation includes individual and group levels, displaying possible paths to forming competitive advantages. This modeling approach provides a means for further analysis of the evolutionary dynamics of human behavior, communities, and organizations in various socioeconomic issues.","PeriodicalId":129626,"journal":{"name":"Interacción","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interacción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.03936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explores human behavior in virtual networked communities, specifically individuals or groups' potential and expressive capacity to respond to internal and external stimuli, with assortative matching as a typical example. A modeling approach based on Multi-Agent Reinforcement Learning (MARL) is proposed, adding a multi-head attention function to the A3C algorithm to enhance learning effectiveness. This approach simulates human behavior in certain scenarios through various environmental parameter settings and agent action strategies. In our experiment, reinforcement learning is employed to serve specific agents that learn from environment status and competitor behaviors, optimizing strategies to achieve better results. The simulation includes individual and group levels, displaying possible paths to forming competitive advantages. This modeling approach provides a means for further analysis of the evolutionary dynamics of human behavior, communities, and organizations in various socioeconomic issues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于策略的强化学习在人类行为建模中的分类匹配
本文探讨了虚拟网络社区中的人类行为,特别是个人或群体对内部和外部刺激的反应潜力和表达能力,并以分类匹配为典型例子。提出了一种基于多智能体强化学习(MARL)的建模方法,在A3C算法中加入多头注意函数,提高学习效率。该方法通过各种环境参数设置和代理动作策略来模拟特定场景下的人类行为。在我们的实验中,我们使用强化学习来服务特定的代理,这些代理从环境状态和竞争对手行为中学习,优化策略以获得更好的结果。仿真包括个体和群体两个层面,展示了形成竞争优势的可能路径。这种建模方法为进一步分析各种社会经济问题中人类行为、社区和组织的进化动态提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Thousand Faces of Explainable AI Along the Machine Learning Life Cycle: Industrial Reality and Current State of Research Tell Me, What Are You Most Afraid Of? Exploring the Effects of Agent Representation on Information Disclosure in Human-Chatbot Interaction Modular 3D Interface Design for Accessible VR Applications A new perspective on the prediction of the innovation performance: A data driven methodology to identify innovation indicators through a comparative study of Boston's neighborhoods Two Heads are Better than One: A Bio-inspired Method for Improving Classification on EEG-ET Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1