AnalogHTM: Memristive Spatial Pooler Learning with Backpropagation

O. Krestinskaya, A. P. James
{"title":"AnalogHTM: Memristive Spatial Pooler Learning with Backpropagation","authors":"O. Krestinskaya, A. P. James","doi":"10.1109/AICAS.2019.8771628","DOIUrl":null,"url":null,"abstract":"Spatial pooler is responsible for feature extraction in Hierarchical Temporal Memory (HTM). In this paper, we present analog backpropagation learning circuits integrated to the memristive circuit design of spatial pooler. Using 0.18μm CMOS technology and TiOx memristor models, the maximum on-chip area and power consumption of the proposed design are 8335.074μm2 and 51.55mW, respectively. The system is tested for a face recognition problem AR face database achieving a recognition accuracy of 90%.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Spatial pooler is responsible for feature extraction in Hierarchical Temporal Memory (HTM). In this paper, we present analog backpropagation learning circuits integrated to the memristive circuit design of spatial pooler. Using 0.18μm CMOS technology and TiOx memristor models, the maximum on-chip area and power consumption of the proposed design are 8335.074μm2 and 51.55mW, respectively. The system is tested for a face recognition problem AR face database achieving a recognition accuracy of 90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反向传播的记忆空间池学习
空间池负责分层时间记忆(Hierarchical Temporal Memory, HTM)中的特征提取。本文提出了将模拟反向传播学习电路集成到空间池的忆阻电路设计中。采用0.18μm CMOS工艺和TiOx忆阻器模型,设计的最大片上面积和功耗分别为8335.074μm2和51.55mW。该系统针对人脸识别问题AR人脸数据库进行了测试,识别准确率达到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1