Multidimensional image processing for remote sensing anomaly detection

D. Rosario, J. Romano
{"title":"Multidimensional image processing for remote sensing anomaly detection","authors":"D. Rosario, J. Romano","doi":"10.1109/IPTA.2010.5586804","DOIUrl":null,"url":null,"abstract":"This paper presents a unique multidimensional image processing approach for autonomous detection of anomalous materials in unknown natural clutter scenarios. Scene anomaly detection has a wide range of use in remote sensing applications requiring no specific material signatures. The approach uses a repeated multisampling scheme to characterize the unknown clutter background and the most popular anomaly detection algorithm—the Reed-Xiaoli algorithm—for scoring. The approach requires only a small fraction of the data cube to characterize clutter, it does not perform segmentation, and it is invariant to objects' scales (i.e., relative spatial sizes of objects in the imagery). Results using real multivariate spectral data are promising for autonomous manmade object detection tasks under different atmospheric conditions.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a unique multidimensional image processing approach for autonomous detection of anomalous materials in unknown natural clutter scenarios. Scene anomaly detection has a wide range of use in remote sensing applications requiring no specific material signatures. The approach uses a repeated multisampling scheme to characterize the unknown clutter background and the most popular anomaly detection algorithm—the Reed-Xiaoli algorithm—for scoring. The approach requires only a small fraction of the data cube to characterize clutter, it does not perform segmentation, and it is invariant to objects' scales (i.e., relative spatial sizes of objects in the imagery). Results using real multivariate spectral data are promising for autonomous manmade object detection tasks under different atmospheric conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遥感异常检测的多维图像处理
本文提出了一种独特的多维图像处理方法,用于未知自然杂波场景下异常材料的自主检测。场景异常检测在不需要特定材料签名的遥感应用中具有广泛的用途。该方法使用重复多采样方案来表征未知杂波背景,并使用最流行的异常检测算法Reed-Xiaoli算法进行评分。该方法只需要数据立方体的一小部分来表征杂波,它不执行分割,并且它对物体的尺度(即图像中物体的相对空间大小)是不变的。利用真实多变量光谱数据的结果为不同大气条件下的自主人造目标检测任务提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1