Comparative Study of Model-Based Control of Energy/Current Cascade Control for a Multiphase Interleaved Fuel Cell Boost Converter

W. Thammasiriroj, P. Mungporn, B. Nahid-Mobarakeh, S. Pierfederici, N. Bizon, P. Thounthong
{"title":"Comparative Study of Model-Based Control of Energy/Current Cascade Control for a Multiphase Interleaved Fuel Cell Boost Converter","authors":"W. Thammasiriroj, P. Mungporn, B. Nahid-Mobarakeh, S. Pierfederici, N. Bizon, P. Thounthong","doi":"10.1109/ICPEI49860.2020.9431490","DOIUrl":null,"url":null,"abstract":"In general, fuel cells generate high-current low-voltage unregulated electricity in the form of direct current, which is not suitable for electrical appliances due to its low voltage. Therefore, a high-power boost converter is required for adjusting the output voltage from fuel cells to the desired level in order to distribute high-voltage power at a constant rate. In this study, a parallel multiphase step-up power circuits with an interleaving method was used to increase voltage and distribute electric currents in many phases to reduce the current rating of the switching device in each phase. Meanwhile, an interleaving technique was employed for shifting phases of electric currents in order to reduce the sum of ripple currents in fuel cells in response to the nonlinear behaviors of the switching circuit. This article presents a nonlinear model-based control approach based on the differential flatness method for the interleaved boost circuits used in fuel cell applications. The fuel cell converter was connected to dSPACE DS1202 MicroLabBox, as well as inspected and implemented by a polymer electrolyte membrane fuel cells (PEMFC, size 2.5 kW) in terms of steady state, dynamic characteristics, and control robustness. The findings from this study were very satisfactory, and when experimentally compared with the classical proportional–integral (PI) control scheme, it was found that the differential flatness control could better respond to load changes.","PeriodicalId":342582,"journal":{"name":"2020 International Conference on Power, Energy and Innovations (ICPEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI49860.2020.9431490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In general, fuel cells generate high-current low-voltage unregulated electricity in the form of direct current, which is not suitable for electrical appliances due to its low voltage. Therefore, a high-power boost converter is required for adjusting the output voltage from fuel cells to the desired level in order to distribute high-voltage power at a constant rate. In this study, a parallel multiphase step-up power circuits with an interleaving method was used to increase voltage and distribute electric currents in many phases to reduce the current rating of the switching device in each phase. Meanwhile, an interleaving technique was employed for shifting phases of electric currents in order to reduce the sum of ripple currents in fuel cells in response to the nonlinear behaviors of the switching circuit. This article presents a nonlinear model-based control approach based on the differential flatness method for the interleaved boost circuits used in fuel cell applications. The fuel cell converter was connected to dSPACE DS1202 MicroLabBox, as well as inspected and implemented by a polymer electrolyte membrane fuel cells (PEMFC, size 2.5 kW) in terms of steady state, dynamic characteristics, and control robustness. The findings from this study were very satisfactory, and when experimentally compared with the classical proportional–integral (PI) control scheme, it was found that the differential flatness control could better respond to load changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的多相交错燃料电池升压变换器能量/电流串级控制比较研究
一般情况下,燃料电池以直流电的形式产生大电流低压无规电,由于其电压低,不适合电器使用。因此,需要一个高功率升压转换器来调节燃料电池的输出电压到所需的水平,以便以恒定的速率分配高压功率。本研究采用并联的多相升压电源电路,采用交错电路的方式,在多相中增加电压和分配电流,以降低开关器件在每一相中的额定电流。同时,针对开关电路的非线性特性,采用交错换相技术减少燃料电池的纹波电流总和。本文提出了一种基于非线性模型的燃料电池交错升压电路的微分平坦度控制方法。燃料电池转换器连接到dSPACE DS1202 MicroLabBox上,并通过聚合物电解质膜燃料电池(PEMFC,尺寸2.5 kW)进行稳态、动态特性和控制鲁棒性测试和实施。实验结果表明,与传统的比例积分(PI)控制方案相比,差分平整度控制能更好地响应负载变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Design of Wireless Charging Lane for Light Rail Transit Tie-Line Constrained Multi-Area Generation Scheduling Using Mixed Integer Programming Part I: Problem Formulation Intelligent Machine Learning Techniques for Condition Assessment of Power Transformers Energy Consumption Study of Rapid Charging of Catenary Free Light Rail Transit A Dual Band Split Ring Electromagnetic Band Gap using Interdigital Technique and its Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1