Adaptive Cruise Control for Autonomous Electric Vehicles based on Q-learning algorithm

Angelo Coppola, A. Petrillo, R. Rizzo, S. Santini
{"title":"Adaptive Cruise Control for Autonomous Electric Vehicles based on Q-learning algorithm","authors":"Angelo Coppola, A. Petrillo, R. Rizzo, S. Santini","doi":"10.23919/AEIT53387.2021.9627059","DOIUrl":null,"url":null,"abstract":"This work presents an ACC-like longitudinal controller for an autonomous electric vehicle, named Ego-Vehicle, based on a Deep Deterministic Reinforcement Learning algorithm. More specifically, the designed algorithm exploits the use of the Deep Deterministic Policy Gradient (DDPG) agent and the reward function explicitly takes into account both the speed and position error of the Ego-Vehicle w.r.t. the preceding one. After properly training the DDPG agent, the control ACC-like strategy is validated considering a realistic driving cycle for the preceding vehicle. Numerical results confirm the effectiveness of the designed strategy.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9627059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work presents an ACC-like longitudinal controller for an autonomous electric vehicle, named Ego-Vehicle, based on a Deep Deterministic Reinforcement Learning algorithm. More specifically, the designed algorithm exploits the use of the Deep Deterministic Policy Gradient (DDPG) agent and the reward function explicitly takes into account both the speed and position error of the Ego-Vehicle w.r.t. the preceding one. After properly training the DDPG agent, the control ACC-like strategy is validated considering a realistic driving cycle for the preceding vehicle. Numerical results confirm the effectiveness of the designed strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于q -学习算法的自动驾驶电动车自适应巡航控制
这项工作提出了一种基于深度确定性强化学习算法的自动电动汽车的类似acc的纵向控制器,名为Ego-Vehicle。更具体地说,所设计的算法利用了深度确定性策略梯度(DDPG)代理,并且奖励函数明确地考虑了自我车辆的速度和位置误差。在对DDPG智能体进行适当训练后,考虑前车的真实行驶周期,验证了类acc控制策略。数值结果验证了所设计策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wind power forecasting models for very short-term operation of power systems MOSFETs Selection in Front-end Active Bridge Rectifier On Comparing Regressive and Artificial Neural Network Methods for Power System Forecast FExWaveS application for voltage dips origin assessment: optimization of the tool in views of its integration into the QuEEN monitoring system OPF model with dynamic security constraints: a state of the art review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1