Particle swarm optimization with oscillation control

Javier H. López, L. Lanzarini, A. D. Giusti
{"title":"Particle swarm optimization with oscillation control","authors":"Javier H. López, L. Lanzarini, A. D. Giusti","doi":"10.1145/1569901.1570141","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) is a metaheuristic that has been successfully applied to linear and non-linear optimization problems in functions with discrete and continuous domains. This paper presents a new variation of this algorithm - called oscPSO - that improves the inherent search capacity of the original (canonical) version of the PSO algorithm. This version uses a deterministic local search method whose use depends on the movement patterns of the particles in each dimension of the problem. The method proposed was assessed by means of a set of complex test functions, and the performance of this version was compared with that of the original version of the PSO algorithm. In all cases, the oscPSO variation equaled or surpassed the performance of the canonical version of the algorithm.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Particle Swarm Optimization (PSO) is a metaheuristic that has been successfully applied to linear and non-linear optimization problems in functions with discrete and continuous domains. This paper presents a new variation of this algorithm - called oscPSO - that improves the inherent search capacity of the original (canonical) version of the PSO algorithm. This version uses a deterministic local search method whose use depends on the movement patterns of the particles in each dimension of the problem. The method proposed was assessed by means of a set of complex test functions, and the performance of this version was compared with that of the original version of the PSO algorithm. In all cases, the oscPSO variation equaled or surpassed the performance of the canonical version of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
振动控制的粒子群优化
粒子群算法(PSO)是一种元启发式算法,已成功地应用于离散域和连续域函数的线性和非线性优化问题。本文提出了该算法的一个新的变体-称为oscPSO -它提高了原有(规范)版本的PSO算法的固有搜索能力。这个版本使用了一种确定性的局部搜索方法,它的使用取决于问题中每个维度中粒子的运动模式。通过一组复杂的测试函数对所提方法进行了评价,并与原PSO算法的性能进行了比较。在所有情况下,oscPSO变化等于或超过了该算法的规范版本的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1