Automatic segmentation of pathological tissues in cardiac MRI

Khaoula Elagouni, C. Ciofolo-Veit, B. Mory
{"title":"Automatic segmentation of pathological tissues in cardiac MRI","authors":"Khaoula Elagouni, C. Ciofolo-Veit, B. Mory","doi":"10.1109/ISBI.2010.5490306","DOIUrl":null,"url":null,"abstract":"In the context of cardiac viability assessment, we propose a new fully automatic method to segment and quantify myocardial pathological tissues in Late Enhancement Cardiac Magnetic Resonance images. Our two main contributions are a generic image intensity analysis and an original variational segmentation method, the Fast Region Competition. The obtained results are robust to anatomical variability and partial volume effects and false positives are avoided. To validate our results, we use representations that are independent of myocardium shape and size and compute clinically relevant indicators. The proposed method was tested on 100 slices and compared to other classical segmentation approaches, showing the best agreement with semi-automatic expert delineations.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In the context of cardiac viability assessment, we propose a new fully automatic method to segment and quantify myocardial pathological tissues in Late Enhancement Cardiac Magnetic Resonance images. Our two main contributions are a generic image intensity analysis and an original variational segmentation method, the Fast Region Competition. The obtained results are robust to anatomical variability and partial volume effects and false positives are avoided. To validate our results, we use representations that are independent of myocardium shape and size and compute clinically relevant indicators. The proposed method was tested on 100 slices and compared to other classical segmentation approaches, showing the best agreement with semi-automatic expert delineations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏MRI病理组织的自动分割
在心脏活力评估的背景下,我们提出了一种新的全自动方法来分割和量化心脏后期增强磁共振图像中的心肌病理组织。我们的两个主要贡献是通用的图像强度分析和原始的变分分割方法,快速区域竞争。所获得的结果对解剖变异性和部分体积效应和假阳性是稳健的。为了验证我们的结果,我们使用独立于心肌形状和大小的表示,并计算临床相关指标。该方法在100个切片上进行了测试,并与其他经典分割方法进行了比较,结果表明该方法与半自动专家划分方法最吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1