Online SLAM in dynamic environments

G. Huang, A. Rad, Y. Wong
{"title":"Online SLAM in dynamic environments","authors":"G. Huang, A. Rad, Y. Wong","doi":"10.1109/ICAR.2005.1507422","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel online algorithm for simultaneous localization and mapping (SLAM) in dynamic environments. We first formulate the problem with two interdependent parts: SLAM and multiple target tracking (MTT). To pursue online performance, we propose a hierarchical hybrid method to solve SLAM: locally by maximum likelihood (ML) with occupancy grid map, and globally by extended Kalman filter (EKF) with feature-based map. Meanwhile we apply a straightforward nearest neighborhood (NN) algorithm based on Euclidean metric to address MTT. In order to track multiple moving objects reliably, we propose an enhanced fuzzy clustering (EFC) method to segment 2D range images and reliably group objects. Experiments validated on Pioneer 2DX mobile robot with SICK LMS200 demonstrate the capability and robustness of the proposed algorithm","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we propose a novel online algorithm for simultaneous localization and mapping (SLAM) in dynamic environments. We first formulate the problem with two interdependent parts: SLAM and multiple target tracking (MTT). To pursue online performance, we propose a hierarchical hybrid method to solve SLAM: locally by maximum likelihood (ML) with occupancy grid map, and globally by extended Kalman filter (EKF) with feature-based map. Meanwhile we apply a straightforward nearest neighborhood (NN) algorithm based on Euclidean metric to address MTT. In order to track multiple moving objects reliably, we propose an enhanced fuzzy clustering (EFC) method to segment 2D range images and reliably group objects. Experiments validated on Pioneer 2DX mobile robot with SICK LMS200 demonstrate the capability and robustness of the proposed algorithm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态环境下的在线SLAM
在本文中,我们提出了一种新的动态环境下的在线同时定位和映射算法。我们首先用SLAM和多目标跟踪(MTT)两个相互依赖的部分来描述问题。为了追求在线性能,我们提出了一种分层混合方法来解决SLAM:局部使用最大似然(ML)与占用网格图,全局使用扩展卡尔曼滤波(EKF)与基于特征的地图。同时,我们采用基于欧几里得度量的最近邻(NN)算法来解决MTT问题。为了可靠地跟踪多个运动目标,提出了一种增强模糊聚类(EFC)方法来分割二维距离图像并可靠地对目标进行分组。基于SICK LMS200的先锋2DX移动机器人实验验证了该算法的有效性和鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manipulator robotics in use for decommissioning of A-1 nuclear power plant An approach to modelling collaborative teleoperation Intestinal locomotion by means of mucoadhesive films Kalman filters comparison for vehicle localization data alignment An omnidirectional vehicle on a basketball
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1