EPSAC for wastewater treatment process (BSM1)

R. Crisan, I. Nascu, E. Volcke, R. D. De Keyser
{"title":"EPSAC for wastewater treatment process (BSM1)","authors":"R. Crisan, I. Nascu, E. Volcke, R. D. De Keyser","doi":"10.1109/ICSTCC.2015.7321327","DOIUrl":null,"url":null,"abstract":"Predictive control is one of the most spread advanced control algorithms in industrial application field. Extended Prediction Self-Adaptive Control (EPSAC) is a part of this family of algorithms and is suitable for wastewater treatment plants control. The main goal of those industrial processes is to fulfil effluent water quality legal provisions with minimal energy consumption. In order to achieve this goal EPSAC control methodology has been applied to the wastewater treatment process. Benchmark Simulation Model No. 1 (BSM1) has been used to simulate the process dynamics. Two types of control strategies were implemented and tested: predictive control without taking into account measured disturbances and predictive control with feedforward. Feedforward control with two measured disturbances (the influent flow rate and ammonium concentration) has been tested.","PeriodicalId":257135,"journal":{"name":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2015.7321327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predictive control is one of the most spread advanced control algorithms in industrial application field. Extended Prediction Self-Adaptive Control (EPSAC) is a part of this family of algorithms and is suitable for wastewater treatment plants control. The main goal of those industrial processes is to fulfil effluent water quality legal provisions with minimal energy consumption. In order to achieve this goal EPSAC control methodology has been applied to the wastewater treatment process. Benchmark Simulation Model No. 1 (BSM1) has been used to simulate the process dynamics. Two types of control strategies were implemented and tested: predictive control without taking into account measured disturbances and predictive control with feedforward. Feedforward control with two measured disturbances (the influent flow rate and ammonium concentration) has been tested.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
污水处理过程EPSAC (BSM1)
预测控制是工业应用领域中应用最广泛的先进控制算法之一。扩展预测自适应控制(EPSAC)是该算法家族的一部分,适用于污水处理厂的控制。这些工业过程的主要目标是以最小的能源消耗来满足污水质量的法律规定。为了实现这一目标,EPSAC控制方法已被应用于污水处理过程。采用基准仿真模型1 (BSM1)对过程动力学进行了仿真。实现并测试了两种控制策略:不考虑实测扰动的预测控制和具有前馈的预测控制。前馈控制与两个测量扰动(进水流量和铵浓度)进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution from Power Grid to Smart Grid: Design challenges Analysis of phosphorus removal performances in a municipal treatment plant Pneumatic assistant of one degree of freedom for lifting Programming paradigm of a microcontroller with hardware scheduler engine and independent pipeline registers - a software approach The classification of a plant family based on morpho-fractal dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1